You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							431 lines
						
					
					
						
							14 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							431 lines
						
					
					
						
							14 KiB
						
					
					
				| // This file is part of Eigen, a lightweight C++ template library | |
| // for linear algebra. Eigen itself is part of the KDE project. | |
| // | |
| // Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr> | |
| // | |
| // This Source Code Form is subject to the terms of the Mozilla | |
| // Public License v. 2.0. If a copy of the MPL was not distributed | |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | |
|  | |
| #include "main.h" | |
| #include <Eigen/Geometry> | |
| #include <Eigen/LU> | |
| #include <Eigen/SVD> | |
|  | |
| template<typename Scalar> void geometry(void) | |
| { | |
|   /* this test covers the following files: | |
|      Cross.h Quaternion.h, Transform.cpp | |
|   */ | |
| 
 | |
|   typedef Matrix<Scalar,2,2> Matrix2; | |
|   typedef Matrix<Scalar,3,3> Matrix3; | |
|   typedef Matrix<Scalar,4,4> Matrix4; | |
|   typedef Matrix<Scalar,2,1> Vector2; | |
|   typedef Matrix<Scalar,3,1> Vector3; | |
|   typedef Matrix<Scalar,4,1> Vector4; | |
|   typedef Quaternion<Scalar> Quaternionx; | |
|   typedef AngleAxis<Scalar> AngleAxisx; | |
|   typedef Transform<Scalar,2> Transform2; | |
|   typedef Transform<Scalar,3> Transform3; | |
|   typedef Scaling<Scalar,2> Scaling2; | |
|   typedef Scaling<Scalar,3> Scaling3; | |
|   typedef Translation<Scalar,2> Translation2; | |
|   typedef Translation<Scalar,3> Translation3; | |
| 
 | |
|   Scalar largeEps = test_precision<Scalar>(); | |
|   if (ei_is_same_type<Scalar,float>::ret) | |
|     largeEps = 1e-2f; | |
| 
 | |
|   Vector3 v0 = Vector3::Random(), | |
|     v1 = Vector3::Random(), | |
|     v2 = Vector3::Random(); | |
|   Vector2 u0 = Vector2::Random(); | |
|   Matrix3 matrot1; | |
| 
 | |
|   Scalar a = ei_random<Scalar>(-Scalar(M_PI), Scalar(M_PI)); | |
| 
 | |
|   // cross product | |
|   VERIFY_IS_MUCH_SMALLER_THAN(v1.cross(v2).eigen2_dot(v1), Scalar(1)); | |
|   Matrix3 m; | |
|   m << v0.normalized(), | |
|       (v0.cross(v1)).normalized(), | |
|       (v0.cross(v1).cross(v0)).normalized(); | |
|   VERIFY(m.isUnitary()); | |
| 
 | |
|   // Quaternion: Identity(), setIdentity(); | |
|   Quaternionx q1, q2; | |
|   q2.setIdentity(); | |
|   VERIFY_IS_APPROX(Quaternionx(Quaternionx::Identity()).coeffs(), q2.coeffs()); | |
|   q1.coeffs().setRandom(); | |
|   VERIFY_IS_APPROX(q1.coeffs(), (q1*q2).coeffs()); | |
| 
 | |
|   // unitOrthogonal | |
|   VERIFY_IS_MUCH_SMALLER_THAN(u0.unitOrthogonal().eigen2_dot(u0), Scalar(1)); | |
|   VERIFY_IS_MUCH_SMALLER_THAN(v0.unitOrthogonal().eigen2_dot(v0), Scalar(1)); | |
|   VERIFY_IS_APPROX(u0.unitOrthogonal().norm(), Scalar(1)); | |
|   VERIFY_IS_APPROX(v0.unitOrthogonal().norm(), Scalar(1)); | |
| 
 | |
| 
 | |
|   VERIFY_IS_APPROX(v0, AngleAxisx(a, v0.normalized()) * v0); | |
|   VERIFY_IS_APPROX(-v0, AngleAxisx(Scalar(M_PI), v0.unitOrthogonal()) * v0); | |
|   VERIFY_IS_APPROX(ei_cos(a)*v0.squaredNorm(), v0.eigen2_dot(AngleAxisx(a, v0.unitOrthogonal()) * v0)); | |
|   m = AngleAxisx(a, v0.normalized()).toRotationMatrix().adjoint(); | |
|   VERIFY_IS_APPROX(Matrix3::Identity(), m * AngleAxisx(a, v0.normalized())); | |
|   VERIFY_IS_APPROX(Matrix3::Identity(), AngleAxisx(a, v0.normalized()) * m); | |
| 
 | |
|   q1 = AngleAxisx(a, v0.normalized()); | |
|   q2 = AngleAxisx(a, v1.normalized()); | |
| 
 | |
|   // angular distance | |
|   Scalar refangle = ei_abs(AngleAxisx(q1.inverse()*q2).angle()); | |
|   if (refangle>Scalar(M_PI)) | |
|     refangle = Scalar(2)*Scalar(M_PI) - refangle; | |
|    | |
|   if((q1.coeffs()-q2.coeffs()).norm() > 10*largeEps) | |
|   { | |
|     VERIFY(ei_isApprox(q1.angularDistance(q2), refangle, largeEps)); | |
|   } | |
| 
 | |
|   // rotation matrix conversion | |
|   VERIFY_IS_APPROX(q1 * v2, q1.toRotationMatrix() * v2); | |
|   VERIFY_IS_APPROX(q1 * q2 * v2, | |
|     q1.toRotationMatrix() * q2.toRotationMatrix() * v2); | |
| 
 | |
|   VERIFY( (q2*q1).isApprox(q1*q2, largeEps) || !(q2 * q1 * v2).isApprox( | |
|     q1.toRotationMatrix() * q2.toRotationMatrix() * v2)); | |
| 
 | |
|   q2 = q1.toRotationMatrix(); | |
|   VERIFY_IS_APPROX(q1*v1,q2*v1); | |
| 
 | |
|   matrot1 = AngleAxisx(Scalar(0.1), Vector3::UnitX()) | |
|           * AngleAxisx(Scalar(0.2), Vector3::UnitY()) | |
|           * AngleAxisx(Scalar(0.3), Vector3::UnitZ()); | |
|   VERIFY_IS_APPROX(matrot1 * v1, | |
|        AngleAxisx(Scalar(0.1), Vector3(1,0,0)).toRotationMatrix() | |
|     * (AngleAxisx(Scalar(0.2), Vector3(0,1,0)).toRotationMatrix() | |
|     * (AngleAxisx(Scalar(0.3), Vector3(0,0,1)).toRotationMatrix() * v1))); | |
| 
 | |
|   // angle-axis conversion | |
|   AngleAxisx aa = q1; | |
|   VERIFY_IS_APPROX(q1 * v1, Quaternionx(aa) * v1); | |
|   VERIFY_IS_NOT_APPROX(q1 * v1, Quaternionx(AngleAxisx(aa.angle()*2,aa.axis())) * v1); | |
| 
 | |
|   // from two vector creation | |
|   VERIFY_IS_APPROX(v2.normalized(),(q2.setFromTwoVectors(v1,v2)*v1).normalized()); | |
|   VERIFY_IS_APPROX(v2.normalized(),(q2.setFromTwoVectors(v1,v2)*v1).normalized()); | |
| 
 | |
|   // inverse and conjugate | |
|   VERIFY_IS_APPROX(q1 * (q1.inverse() * v1), v1); | |
|   VERIFY_IS_APPROX(q1 * (q1.conjugate() * v1), v1); | |
| 
 | |
|   // AngleAxis | |
|   VERIFY_IS_APPROX(AngleAxisx(a,v1.normalized()).toRotationMatrix(), | |
|     Quaternionx(AngleAxisx(a,v1.normalized())).toRotationMatrix()); | |
| 
 | |
|   AngleAxisx aa1; | |
|   m = q1.toRotationMatrix(); | |
|   aa1 = m; | |
|   VERIFY_IS_APPROX(AngleAxisx(m).toRotationMatrix(), | |
|     Quaternionx(m).toRotationMatrix()); | |
| 
 | |
|   // Transform | |
|   // TODO complete the tests ! | |
|   a = 0; | |
|   while (ei_abs(a)<Scalar(0.1)) | |
|     a = ei_random<Scalar>(-Scalar(0.4)*Scalar(M_PI), Scalar(0.4)*Scalar(M_PI)); | |
|   q1 = AngleAxisx(a, v0.normalized()); | |
|   Transform3 t0, t1, t2; | |
|   // first test setIdentity() and Identity() | |
|   t0.setIdentity(); | |
|   VERIFY_IS_APPROX(t0.matrix(), Transform3::MatrixType::Identity()); | |
|   t0.matrix().setZero(); | |
|   t0 = Transform3::Identity(); | |
|   VERIFY_IS_APPROX(t0.matrix(), Transform3::MatrixType::Identity()); | |
| 
 | |
|   t0.linear() = q1.toRotationMatrix(); | |
|   t1.setIdentity(); | |
|   t1.linear() = q1.toRotationMatrix(); | |
| 
 | |
|   v0 << 50, 2, 1;//= ei_random_matrix<Vector3>().cwiseProduct(Vector3(10,2,0.5)); | |
|   t0.scale(v0); | |
|   t1.prescale(v0); | |
| 
 | |
|   VERIFY_IS_APPROX( (t0 * Vector3(1,0,0)).norm(), v0.x()); | |
|   //VERIFY(!ei_isApprox((t1 * Vector3(1,0,0)).norm(), v0.x())); | |
|  | |
|   t0.setIdentity(); | |
|   t1.setIdentity(); | |
|   v1 << 1, 2, 3; | |
|   t0.linear() = q1.toRotationMatrix(); | |
|   t0.pretranslate(v0); | |
|   t0.scale(v1); | |
|   t1.linear() = q1.conjugate().toRotationMatrix(); | |
|   t1.prescale(v1.cwise().inverse()); | |
|   t1.translate(-v0); | |
| 
 | |
|   VERIFY((t0.matrix() * t1.matrix()).isIdentity(test_precision<Scalar>())); | |
| 
 | |
|   t1.fromPositionOrientationScale(v0, q1, v1); | |
|   VERIFY_IS_APPROX(t1.matrix(), t0.matrix()); | |
|   VERIFY_IS_APPROX(t1*v1, t0*v1); | |
| 
 | |
|   t0.setIdentity(); t0.scale(v0).rotate(q1.toRotationMatrix()); | |
|   t1.setIdentity(); t1.scale(v0).rotate(q1); | |
|   VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); | |
| 
 | |
|   t0.setIdentity(); t0.scale(v0).rotate(AngleAxisx(q1)); | |
|   VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); | |
| 
 | |
|   VERIFY_IS_APPROX(t0.scale(a).matrix(), t1.scale(Vector3::Constant(a)).matrix()); | |
|   VERIFY_IS_APPROX(t0.prescale(a).matrix(), t1.prescale(Vector3::Constant(a)).matrix()); | |
| 
 | |
|   // More transform constructors, operator=, operator*= | |
|  | |
|   Matrix3 mat3 = Matrix3::Random(); | |
|   Matrix4 mat4; | |
|   mat4 << mat3 , Vector3::Zero() , Vector4::Zero().transpose(); | |
|   Transform3 tmat3(mat3), tmat4(mat4); | |
|   tmat4.matrix()(3,3) = Scalar(1); | |
|   VERIFY_IS_APPROX(tmat3.matrix(), tmat4.matrix()); | |
| 
 | |
|   Scalar a3 = ei_random<Scalar>(-Scalar(M_PI), Scalar(M_PI)); | |
|   Vector3 v3 = Vector3::Random().normalized(); | |
|   AngleAxisx aa3(a3, v3); | |
|   Transform3 t3(aa3); | |
|   Transform3 t4; | |
|   t4 = aa3; | |
|   VERIFY_IS_APPROX(t3.matrix(), t4.matrix()); | |
|   t4.rotate(AngleAxisx(-a3,v3)); | |
|   VERIFY_IS_APPROX(t4.matrix(), Matrix4::Identity()); | |
|   t4 *= aa3; | |
|   VERIFY_IS_APPROX(t3.matrix(), t4.matrix()); | |
| 
 | |
|   v3 = Vector3::Random(); | |
|   Translation3 tv3(v3); | |
|   Transform3 t5(tv3); | |
|   t4 = tv3; | |
|   VERIFY_IS_APPROX(t5.matrix(), t4.matrix()); | |
|   t4.translate(-v3); | |
|   VERIFY_IS_APPROX(t4.matrix(), Matrix4::Identity()); | |
|   t4 *= tv3; | |
|   VERIFY_IS_APPROX(t5.matrix(), t4.matrix()); | |
| 
 | |
|   Scaling3 sv3(v3); | |
|   Transform3 t6(sv3); | |
|   t4 = sv3; | |
|   VERIFY_IS_APPROX(t6.matrix(), t4.matrix()); | |
|   t4.scale(v3.cwise().inverse()); | |
|   VERIFY_IS_APPROX(t4.matrix(), Matrix4::Identity()); | |
|   t4 *= sv3; | |
|   VERIFY_IS_APPROX(t6.matrix(), t4.matrix()); | |
| 
 | |
|   // matrix * transform | |
|   VERIFY_IS_APPROX(Transform3(t3.matrix()*t4).matrix(), Transform3(t3*t4).matrix()); | |
| 
 | |
|   // chained Transform product | |
|   VERIFY_IS_APPROX(((t3*t4)*t5).matrix(), (t3*(t4*t5)).matrix()); | |
| 
 | |
|   // check that Transform product doesn't have aliasing problems | |
|   t5 = t4; | |
|   t5 = t5*t5; | |
|   VERIFY_IS_APPROX(t5, t4*t4); | |
| 
 | |
|   // 2D transformation | |
|   Transform2 t20, t21; | |
|   Vector2 v20 = Vector2::Random(); | |
|   Vector2 v21 = Vector2::Random(); | |
|   for (int k=0; k<2; ++k) | |
|     if (ei_abs(v21[k])<Scalar(1e-3)) v21[k] = Scalar(1e-3); | |
|   t21.setIdentity(); | |
|   t21.linear() = Rotation2D<Scalar>(a).toRotationMatrix(); | |
|   VERIFY_IS_APPROX(t20.fromPositionOrientationScale(v20,a,v21).matrix(), | |
|     t21.pretranslate(v20).scale(v21).matrix()); | |
| 
 | |
|   t21.setIdentity(); | |
|   t21.linear() = Rotation2D<Scalar>(-a).toRotationMatrix(); | |
|   VERIFY( (t20.fromPositionOrientationScale(v20,a,v21) | |
|         * (t21.prescale(v21.cwise().inverse()).translate(-v20))).matrix().isIdentity(test_precision<Scalar>()) ); | |
| 
 | |
|   // Transform - new API | |
|   // 3D | |
|   t0.setIdentity(); | |
|   t0.rotate(q1).scale(v0).translate(v0); | |
|   // mat * scaling and mat * translation | |
|   t1 = (Matrix3(q1) * Scaling3(v0)) * Translation3(v0); | |
|   VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); | |
|   // mat * transformation and scaling * translation | |
|   t1 = Matrix3(q1) * (Scaling3(v0) * Translation3(v0)); | |
|   VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); | |
| 
 | |
|   t0.setIdentity(); | |
|   t0.prerotate(q1).prescale(v0).pretranslate(v0); | |
|   // translation * scaling and transformation * mat | |
|   t1 = (Translation3(v0) * Scaling3(v0)) * Matrix3(q1); | |
|   VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); | |
|   // scaling * mat and translation * mat | |
|   t1 = Translation3(v0) * (Scaling3(v0) * Matrix3(q1)); | |
|   VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); | |
| 
 | |
|   t0.setIdentity(); | |
|   t0.scale(v0).translate(v0).rotate(q1); | |
|   // translation * mat and scaling * transformation | |
|   t1 = Scaling3(v0) * (Translation3(v0) * Matrix3(q1)); | |
|   VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); | |
|   // transformation * scaling | |
|   t0.scale(v0); | |
|   t1 = t1 * Scaling3(v0); | |
|   VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); | |
|   // transformation * translation | |
|   t0.translate(v0); | |
|   t1 = t1 * Translation3(v0); | |
|   VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); | |
|   // translation * transformation | |
|   t0.pretranslate(v0); | |
|   t1 = Translation3(v0) * t1; | |
|   VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); | |
| 
 | |
|   // transform * quaternion | |
|   t0.rotate(q1); | |
|   t1 = t1 * q1; | |
|   VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); | |
| 
 | |
|   // translation * quaternion | |
|   t0.translate(v1).rotate(q1); | |
|   t1 = t1 * (Translation3(v1) * q1); | |
|   VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); | |
| 
 | |
|   // scaling * quaternion | |
|   t0.scale(v1).rotate(q1); | |
|   t1 = t1 * (Scaling3(v1) * q1); | |
|   VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); | |
| 
 | |
|   // quaternion * transform | |
|   t0.prerotate(q1); | |
|   t1 = q1 * t1; | |
|   VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); | |
| 
 | |
|   // quaternion * translation | |
|   t0.rotate(q1).translate(v1); | |
|   t1 = t1 * (q1 * Translation3(v1)); | |
|   VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); | |
| 
 | |
|   // quaternion * scaling | |
|   t0.rotate(q1).scale(v1); | |
|   t1 = t1 * (q1 * Scaling3(v1)); | |
|   VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); | |
| 
 | |
|   // translation * vector | |
|   t0.setIdentity(); | |
|   t0.translate(v0); | |
|   VERIFY_IS_APPROX(t0 * v1, Translation3(v0) * v1); | |
| 
 | |
|   // scaling * vector | |
|   t0.setIdentity(); | |
|   t0.scale(v0); | |
|   VERIFY_IS_APPROX(t0 * v1, Scaling3(v0) * v1); | |
| 
 | |
|   // test transform inversion | |
|   t0.setIdentity(); | |
|   t0.translate(v0); | |
|   t0.linear().setRandom(); | |
|   VERIFY_IS_APPROX(t0.inverse(Affine), t0.matrix().inverse()); | |
|   t0.setIdentity(); | |
|   t0.translate(v0).rotate(q1); | |
|   VERIFY_IS_APPROX(t0.inverse(Isometry), t0.matrix().inverse()); | |
| 
 | |
|   // test extract rotation and scaling | |
|   t0.setIdentity(); | |
|   t0.translate(v0).rotate(q1).scale(v1); | |
|   VERIFY_IS_APPROX(t0.rotation() * v1, Matrix3(q1) * v1); | |
| 
 | |
|   Matrix3 mat_rotation, mat_scaling; | |
|   t0.setIdentity(); | |
|   t0.translate(v0).rotate(q1).scale(v1); | |
|   t0.computeRotationScaling(&mat_rotation, &mat_scaling); | |
|   VERIFY_IS_APPROX(t0.linear(), mat_rotation * mat_scaling); | |
|   VERIFY_IS_APPROX(mat_rotation*mat_rotation.adjoint(), Matrix3::Identity()); | |
|   VERIFY_IS_APPROX(mat_rotation.determinant(), Scalar(1)); | |
|   t0.computeScalingRotation(&mat_scaling, &mat_rotation); | |
|   VERIFY_IS_APPROX(t0.linear(), mat_scaling * mat_rotation); | |
|   VERIFY_IS_APPROX(mat_rotation*mat_rotation.adjoint(), Matrix3::Identity()); | |
|   VERIFY_IS_APPROX(mat_rotation.determinant(), Scalar(1)); | |
| 
 | |
|   // test casting | |
|   Transform<float,3> t1f = t1.template cast<float>(); | |
|   VERIFY_IS_APPROX(t1f.template cast<Scalar>(),t1); | |
|   Transform<double,3> t1d = t1.template cast<double>(); | |
|   VERIFY_IS_APPROX(t1d.template cast<Scalar>(),t1); | |
| 
 | |
|   Translation3 tr1(v0); | |
|   Translation<float,3> tr1f = tr1.template cast<float>(); | |
|   VERIFY_IS_APPROX(tr1f.template cast<Scalar>(),tr1); | |
|   Translation<double,3> tr1d = tr1.template cast<double>(); | |
|   VERIFY_IS_APPROX(tr1d.template cast<Scalar>(),tr1); | |
| 
 | |
|   Scaling3 sc1(v0); | |
|   Scaling<float,3> sc1f = sc1.template cast<float>(); | |
|   VERIFY_IS_APPROX(sc1f.template cast<Scalar>(),sc1); | |
|   Scaling<double,3> sc1d = sc1.template cast<double>(); | |
|   VERIFY_IS_APPROX(sc1d.template cast<Scalar>(),sc1); | |
| 
 | |
|   Quaternion<float> q1f = q1.template cast<float>(); | |
|   VERIFY_IS_APPROX(q1f.template cast<Scalar>(),q1); | |
|   Quaternion<double> q1d = q1.template cast<double>(); | |
|   VERIFY_IS_APPROX(q1d.template cast<Scalar>(),q1); | |
| 
 | |
|   AngleAxis<float> aa1f = aa1.template cast<float>(); | |
|   VERIFY_IS_APPROX(aa1f.template cast<Scalar>(),aa1); | |
|   AngleAxis<double> aa1d = aa1.template cast<double>(); | |
|   VERIFY_IS_APPROX(aa1d.template cast<Scalar>(),aa1); | |
| 
 | |
|   Rotation2D<Scalar> r2d1(ei_random<Scalar>()); | |
|   Rotation2D<float> r2d1f = r2d1.template cast<float>(); | |
|   VERIFY_IS_APPROX(r2d1f.template cast<Scalar>(),r2d1); | |
|   Rotation2D<double> r2d1d = r2d1.template cast<double>(); | |
|   VERIFY_IS_APPROX(r2d1d.template cast<Scalar>(),r2d1); | |
| 
 | |
|   m = q1; | |
| //   m.col(1) = Vector3(0,ei_random<Scalar>(),ei_random<Scalar>()).normalized(); | |
| //   m.col(0) = Vector3(-1,0,0).normalized(); | |
| //   m.col(2) = m.col(0).cross(m.col(1)); | |
|   #define VERIFY_EULER(I,J,K, X,Y,Z) { \ | |
|     Vector3 ea = m.eulerAngles(I,J,K); \ | |
|     Matrix3 m1 = Matrix3(AngleAxisx(ea[0], Vector3::Unit##X()) * AngleAxisx(ea[1], Vector3::Unit##Y()) * AngleAxisx(ea[2], Vector3::Unit##Z())); \ | |
|     VERIFY_IS_APPROX(m,  Matrix3(AngleAxisx(ea[0], Vector3::Unit##X()) * AngleAxisx(ea[1], Vector3::Unit##Y()) * AngleAxisx(ea[2], Vector3::Unit##Z()))); \ | |
|   } | |
|   VERIFY_EULER(0,1,2, X,Y,Z); | |
|   VERIFY_EULER(0,1,0, X,Y,X); | |
|   VERIFY_EULER(0,2,1, X,Z,Y); | |
|   VERIFY_EULER(0,2,0, X,Z,X); | |
| 
 | |
|   VERIFY_EULER(1,2,0, Y,Z,X); | |
|   VERIFY_EULER(1,2,1, Y,Z,Y); | |
|   VERIFY_EULER(1,0,2, Y,X,Z); | |
|   VERIFY_EULER(1,0,1, Y,X,Y); | |
| 
 | |
|   VERIFY_EULER(2,0,1, Z,X,Y); | |
|   VERIFY_EULER(2,0,2, Z,X,Z); | |
|   VERIFY_EULER(2,1,0, Z,Y,X); | |
|   VERIFY_EULER(2,1,2, Z,Y,Z); | |
| 
 | |
|   // colwise/rowwise cross product | |
|   mat3.setRandom(); | |
|   Vector3 vec3 = Vector3::Random(); | |
|   Matrix3 mcross; | |
|   int i = ei_random<int>(0,2); | |
|   mcross = mat3.colwise().cross(vec3); | |
|   VERIFY_IS_APPROX(mcross.col(i), mat3.col(i).cross(vec3)); | |
|   mcross = mat3.rowwise().cross(vec3); | |
|   VERIFY_IS_APPROX(mcross.row(i), mat3.row(i).cross(vec3)); | |
| 
 | |
| 
 | |
| } | |
| 
 | |
| void test_eigen2_geometry() | |
| { | |
|   for(int i = 0; i < g_repeat; i++) { | |
|     CALL_SUBTEST_1( geometry<float>() ); | |
|     CALL_SUBTEST_2( geometry<double>() ); | |
|   } | |
| }
 |