You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

418 lines
32 KiB

/*
* File: ApproximationModel.cpp
* Author: tim
*
* Created on August 7, 2015, 9:29 AM
*/
#include <stdint.h>
#include "src/modelchecker/region/ApproximationModel.h"
#include "src/models/sparse/Dtmc.h"
#include "src/models/sparse/Mdp.h"
#include "src/models/ModelType.h"
#include "src/models/sparse/StandardRewardModel.h"
#include "src/solver/MinMaxLinearEquationSolver.h"
#include "src/solver/GameSolver.h"
#include "src/utility/macros.h"
#include "src/utility/region.h"
#include "src/utility/solver.h"
#include "src/utility/vector.h"
#include "src/exceptions/UnexpectedException.h"
#include "src/exceptions/InvalidArgumentException.h"
#include "exceptions/NotImplementedException.h"
namespace storm {
namespace modelchecker {
namespace region {
template<typename ParametricSparseModelType, typename ConstantType>
ApproximationModel<ParametricSparseModelType, ConstantType>::ApproximationModel(ParametricSparseModelType const& parametricModel, std::shared_ptr<storm::logic::OperatorFormula> formula) {
//First some simple checks and initializations
if(formula->isProbabilityOperatorFormula()){
this->computeRewards=false;
} else if(formula->isRewardOperatorFormula()){
this->computeRewards=true;
STORM_LOG_THROW(parametricModel.getType()==storm::models::ModelType::Dtmc, storm::exceptions::InvalidArgumentException, "Approximation with rewards is only implemented for Dtmcs");
STORM_LOG_THROW(parametricModel.hasUniqueRewardModel(), storm::exceptions::InvalidArgumentException, "The rewardmodel of the approximation model should be unique");
STORM_LOG_THROW(parametricModel.getUniqueRewardModel()->second.hasOnlyStateRewards(), storm::exceptions::InvalidArgumentException, "The rewardmodel of the approximation model should have state rewards only");
} else {
STORM_LOG_THROW(false, storm::exceptions::InvalidArgumentException, "Invalid formula: " << formula << ". Approximation model only supports eventually or reachability reward formulae.");
}
this->solverData.player1Goal = storm::solver::SolveGoal(storm::logic::isLowerBound(formula->getComparisonType()));
STORM_LOG_THROW(parametricModel.hasLabel("target"), storm::exceptions::InvalidArgumentException, "The given Model has no \"target\"-statelabel.");
this->targetStates = parametricModel.getStateLabeling().getStates("target");
STORM_LOG_THROW(parametricModel.hasLabel("sink"), storm::exceptions::InvalidArgumentException, "The given Model has no \"sink\"-statelabel.");
storm::storage::BitVector sinkStates=parametricModel.getStateLabeling().getStates("sink");
this->maybeStates = ~(this->targetStates | sinkStates);
STORM_LOG_THROW(parametricModel.getInitialStates().getNumberOfSetBits()==1, storm::exceptions::InvalidArgumentException, "The given model has more or less then one initial state");
storm::storage::sparse::state_type initialState = *parametricModel.getInitialStates().begin();
STORM_LOG_THROW(maybeStates.get(initialState), storm::exceptions::InvalidArgumentException, "The value in the initial state of the given model is independent of parameters");
//The (state-)indices in the equation system will be different from the original ones, as the eq-sys only considers maybestates.
//Hence, we use this vector to translate from old indices to new ones.
std::vector<std::size_t> newIndices(parametricModel.getNumberOfStates(), parametricModel.getNumberOfStates()); //initialize with some illegal index
std::size_t newIndex=0;
for(auto const& index : maybeStates){
newIndices[index]=newIndex;
++newIndex;
}
//Now pre-compute the information for the equation system.
initializeProbabilities(parametricModel, newIndices);
if(this->computeRewards){
initializeRewards(parametricModel, newIndices);
}
this->matrixData.assignment.shrink_to_fit();
this->vectorData.assignment.shrink_to_fit();
if(parametricModel.getType()==storm::models::ModelType::Mdp){
initializePlayer1Matrix(parametricModel);
}
this->solverData.result = std::vector<ConstantType>(maybeStates.getNumberOfSetBits(), this->computeRewards ? storm::utility::one<ConstantType>() : ConstantType(0.5));
this->solverData.initialStateIndex = newIndices[initialState];
this->solverData.lastMinimizingPolicy = Policy(this->matrixData.matrix.getRowGroupCount(), 0);
this->solverData.lastMaximizingPolicy = Policy(this->matrixData.matrix.getRowGroupCount(), 0);
this->solverData.lastPlayer1Policy = Policy(this->matrixData.matrix.getRowGroupCount(), 0);
}
template<typename ParametricSparseModelType, typename ConstantType>
void ApproximationModel<ParametricSparseModelType, ConstantType>::initializeProbabilities(ParametricSparseModelType const& parametricModel, std::vector<std::size_t> const& newIndices) {
STORM_LOG_DEBUG("Approximation model initialization for probabilities");
/* First run: get a matrix with dummy entries at the new positions.
* This matrix will have a row group for every row in the original matrix,
* each rowgroup containing 2^#par rows, where #par is the number of parameters that occur in the original row.
* We also store the substitution that needs to be applied for each row.
*/
ConstantType dummyValue = storm::utility::one<ConstantType>();
storm::storage::SparseMatrixBuilder<ConstantType> matrixBuilder(0, //Unknown number of rows
this->maybeStates.getNumberOfSetBits(), //columns
0, //Unknown number of entries
true, // force dimensions
true, //will have custom row grouping
0); //Unknown number of rowgroups
this->matrixData.rowSubstitutions.reserve(this->maybeStates.getNumberOfSetBits());
storm::storage::BitVector relevantColumns = this->computeRewards ? this->maybeStates : (this->maybeStates | this->targetStates);
std::size_t curRow = 0;
for (auto oldRowGroup : this->maybeStates){
for (std::size_t oldRow = parametricModel.getTransitionMatrix().getRowGroupIndices()[oldRowGroup]; oldRow < parametricModel.getTransitionMatrix().getRowGroupIndices()[oldRowGroup+1]; ++oldRow){
matrixBuilder.newRowGroup(curRow);
// Find the different substitutions, i.e., mappings from Variables that occur in this row to {lower, upper}
std::set<VariableType> occurringVariables;
for(auto const& oldEntry : parametricModel.getTransitionMatrix().getRow(oldRow)){
if(relevantColumns.get(oldEntry.getColumn())){
storm::utility::region::gatherOccurringVariables(oldEntry.getValue(), occurringVariables);
}
}
uint_fast64_t numOfSubstitutions=1ull<<occurringVariables.size(); //=2^(#variables). Note that there is still 1 substitution when #variables==0 (the empty substitution)
for(uint_fast64_t substitutionId=0ull; substitutionId<numOfSubstitutions; ++substitutionId){
//compute actual substitution from substitutionId by interpreting the Id as a bit sequence.
//the occurringVariables.size() least significant bits of substitutionId will represent the substitution that we have to consider
//(00...0 = lower bounds for all parameters, 11...1 = upper bounds for all parameters)
std::map<VariableType, RegionBoundary> currSubstitution;
std::size_t parameterIndex=0ull;
for(auto const& parameter : occurringVariables){
if((substitutionId>>parameterIndex)%2==0){
currSubstitution.insert(typename std::map<VariableType, RegionBoundary>::value_type(parameter, RegionBoundary::LOWER));
}
else{
currSubstitution.insert(typename std::map<VariableType, RegionBoundary>::value_type(parameter, RegionBoundary::UPPER));
}
++parameterIndex;
}
std::size_t substitutionIndex=storm::utility::vector::findOrInsert(this->funcSubData.substitutions, std::move(currSubstitution));
this->matrixData.rowSubstitutions.push_back(substitutionIndex);
//For every substitution, run again through the row and add a dummy entry
//Note that this is still executed once, even if no parameters occur.
for(auto const& oldEntry : parametricModel.getTransitionMatrix().getRow(oldRow)){
if(this->maybeStates.get(oldEntry.getColumn())){
matrixBuilder.addNextValue(curRow, newIndices[oldEntry.getColumn()], dummyValue);
}
}
++curRow;
}
}
}
//Build the matrix. Override the row count (required e.g. when there are only transitions to target for the last matrixrow)
this->matrixData.matrix=matrixBuilder.build(this->matrixData.rowSubstitutions.size());
//Now run again through both matrices to get the remaining ingredients of the matrixData and vectorData
this->matrixData.assignment.reserve(this->matrixData.matrix.getEntryCount());
this->vectorData.vector = std::vector<ConstantType>(this->matrixData.matrix.getRowCount()); //Important to initialize here since iterators have to remain valid
auto vectorIt = this->vectorData.vector.begin();
this->vectorData.assignment.reserve(vectorData.vector.size());
std::size_t curRowGroup = 0;
for(auto oldRowGroup : this->maybeStates){
for (std::size_t oldRow = parametricModel.getTransitionMatrix().getRowGroupIndices()[oldRowGroup]; oldRow < parametricModel.getTransitionMatrix().getRowGroupIndices()[oldRowGroup+1]; ++oldRow){
ParametricType targetProbability = storm::utility::region::getNewFunction<ParametricType, CoefficientType>(storm::utility::zero<CoefficientType>());
if(!this->computeRewards){
for(auto const& oldEntry : parametricModel.getTransitionMatrix().getRow(oldRow)){
if(this->targetStates.get(oldEntry.getColumn())){
targetProbability += oldEntry.getValue();
}
}
}
//Recall: Every row in the old matrix has a row group in the newly created one.
//We will now run through every row that belongs to the rowGroup associated with oldRow.
for (curRow = this->matrixData.matrix.getRowGroupIndices()[curRowGroup]; curRow < this->matrixData.matrix.getRowGroupIndices()[curRowGroup+1]; ++curRow){
auto eqSysMatrixEntry = this->matrixData.matrix.getRow(curRow).begin();
for(auto const& oldEntry : parametricModel.getTransitionMatrix().getRow(oldRow)){
if(this->maybeStates.get(oldEntry.getColumn())){
STORM_LOG_THROW(eqSysMatrixEntry->getColumn()==newIndices[oldEntry.getColumn()], storm::exceptions::UnexpectedException, "old and new entries do not match");
if(storm::utility::isConstant(oldEntry.getValue())){
eqSysMatrixEntry->setValue(storm::utility::region::convertNumber<ConstantType>(storm::utility::region::getConstantPart(oldEntry.getValue())));
} else {
auto functionsIt = this->funcSubData.functions.insert(FunctionEntry(FunctionSubstitution(oldEntry.getValue(), this->matrixData.rowSubstitutions[curRow]), dummyValue)).first;
this->matrixData.assignment.emplace_back(eqSysMatrixEntry, functionsIt->second);
//Note that references to elements of an unordered map remain valid after calling unordered_map::insert.
}
++eqSysMatrixEntry;
}
}
if(!this->computeRewards){
if(storm::utility::isConstant(storm::utility::simplify(targetProbability))){
*vectorIt = storm::utility::region::convertNumber<ConstantType>(storm::utility::region::getConstantPart(targetProbability));
} else {
auto functionsIt = this->funcSubData.functions.insert(FunctionEntry(FunctionSubstitution(targetProbability, this->matrixData.rowSubstitutions[curRow]), dummyValue)).first;
this->vectorData.assignment.emplace_back(vectorIt, functionsIt->second);
*vectorIt = dummyValue;
}
}
++vectorIt;
}
++curRowGroup;
}
}
STORM_LOG_THROW(vectorIt==this->vectorData.vector.end(), storm::exceptions::UnexpectedException, "initProbs: The size of the eq-sys vector is not as it was expected");
this->matrixData.matrix.updateNonzeroEntryCount();
}
template<typename ParametricSparseModelType, typename ConstantType>
void ApproximationModel<ParametricSparseModelType, ConstantType>::initializeRewards(ParametricSparseModelType const& parametricModel, std::vector<std::size_t> const& newIndices){
STORM_LOG_DEBUG("Approximation model initialization for Rewards");
STORM_LOG_THROW(parametricModel.getType()==storm::models::ModelType::Dtmc, storm::exceptions::InvalidArgumentException, "Rewards are only supported for DTMCs (yet)");
//Note: Since the original model is assumed to be a DTMC, there is no outgoing transition of a maybeState that leads to an infinity state.
//Hence, we do not have to set entries of the eqSys vector to infinity (as it would be required for mdp model checking...)
STORM_LOG_THROW(this->vectorData.vector.size()==this->matrixData.matrix.getRowCount(), storm::exceptions::UnexpectedException, "The size of the eq-sys vector does not match to the number of rows in the eq-sys matrix");
this->vectorData.assignment.reserve(vectorData.vector.size());
// run through the state reward vector of the parametric model.
// Constant entries can be set directly.
// For Parametric entries we set a dummy value and insert the corresponding function and the assignment
ConstantType dummyValue = storm::utility::one<ConstantType>();
auto vectorIt = this->vectorData.vector.begin();
for(auto oldState : this->maybeStates){
if(storm::utility::isConstant(parametricModel.getUniqueRewardModel()->second.getStateRewardVector()[oldState])){
ConstantType reward = storm::utility::region::convertNumber<ConstantType>(storm::utility::region::getConstantPart(parametricModel.getUniqueRewardModel()->second.getStateRewardVector()[oldState]));
//Add one of these entries for every row in the row group of oldState
for(auto matrixRow=this->matrixData.matrix.getRowGroupIndices()[oldState]; matrixRow<this->matrixData.matrix.getRowGroupIndices()[oldState+1]; ++matrixRow){
*vectorIt = reward;
++vectorIt;
}
} else {
std::set<VariableType> occurringRewVariables;
storm::utility::region::gatherOccurringVariables(parametricModel.getUniqueRewardModel()->second.getStateRewardVector()[oldState], occurringRewVariables);
// For each row in the row group of oldState, we get the corresponding substitution and insert the FunctionSubstitution
for(auto matrixRow=this->matrixData.matrix.getRowGroupIndices()[oldState]; matrixRow<this->matrixData.matrix.getRowGroupIndices()[oldState+1]; ++matrixRow){
//Extend the substitution for the probabilities with the reward parameters
auto& substitution = this->funcSubData.substitutions[this->matrixData.rowSubstitutions[matrixRow]];
for(auto const& rewardVar : occurringRewVariables){
//Note that map::insert does nothing if rewardVar is already contained in the substitution (i.e. if rewardVar also occurs in the probability functions)
substitution.insert(typename std::map<VariableType, RegionBoundary>::value_type(rewardVar, RegionBoundary::UNSPECIFIED));
}
// insert the FunctionSubstitution
auto functionsIt = this->funcSubData.functions.insert(FunctionEntry(FunctionSubstitution(parametricModel.getUniqueRewardModel()->second.getStateRewardVector()[oldState], this->matrixData.rowSubstitutions[matrixRow]), dummyValue)).first;
//insert assignment and dummy data
this->vectorData.assignment.emplace_back(vectorIt, functionsIt->second);
*vectorIt = dummyValue;
++vectorIt;
}
}
}
STORM_LOG_THROW(vectorIt==this->vectorData.vector.end(), storm::exceptions::UnexpectedException, "initRewards: The size of the eq-sys vector is not as it was expected");
}
template<typename ParametricSparseModelType, typename ConstantType>
void ApproximationModel<ParametricSparseModelType, ConstantType>::initializePlayer1Matrix(ParametricSparseModelType const& parametricModel){
std::size_t p1MatrixSize = matrixData.matrix.getRowGroupCount();
storm::storage::SparseMatrixBuilder<storm::storage::sparse::state_type> matrixBuilder(p1MatrixSize, //rows
p1MatrixSize, //columns
p1MatrixSize, //entries
true, // force dimensions
true, //will have custom row grouping
this->maybeStates.getNumberOfSetBits()); // number of rowgroups
std::size_t curRow = 0;
for (auto oldRowGroup : this->maybeStates){
matrixBuilder.newRowGroup(curRow);
for (std::size_t oldRow = parametricModel.getTransitionMatrix().getRowGroupIndices()[oldRowGroup]; oldRow < parametricModel.getTransitionMatrix().getRowGroupIndices()[oldRowGroup+1]; ++oldRow){
matrixBuilder.addNextValue(curRow,curRow, storm::utility::one<storm::storage::sparse::state_type>());
++curRow;
}
}
this->solverData.player1Matrix = matrixBuilder.build();
}
template<typename ParametricSparseModelType, typename ConstantType>
ApproximationModel<ParametricSparseModelType, ConstantType>::~ApproximationModel() {
//Intentionally left empty
}
template<typename ParametricSparseModelType, typename ConstantType>
std::vector<ConstantType> ApproximationModel<ParametricSparseModelType, ConstantType>::computeValues(ParameterRegion<ParametricType> const& region, bool computeLowerBounds) {
instantiate(region, computeLowerBounds);
std::vector<std::size_t> policy;
invokeSolver(computeLowerBounds, policy);
std::vector<ConstantType> result(this->maybeStates.size());
storm::utility::vector::setVectorValues(result, this->maybeStates, this->solverData.result);
storm::utility::vector::setVectorValues(result, this->targetStates, this->computeRewards ? storm::utility::zero<ConstantType>() : storm::utility::one<ConstantType>());
storm::utility::vector::setVectorValues(result, ~(this->maybeStates | this->targetStates), this->computeRewards ? storm::utility::infinity<ConstantType>() : storm::utility::zero<ConstantType>());
return result;
}
template<typename ParametricSparseModelType, typename ConstantType>
ConstantType ApproximationModel<ParametricSparseModelType, ConstantType>::computeInitialStateValue(ParameterRegion<ParametricType> const& region, bool computeLowerBounds) {
instantiate(region, computeLowerBounds);
Policy& policy = computeLowerBounds ? this->solverData.lastMinimizingPolicy : this->solverData.lastMaximizingPolicy;
//TODO: at this point, set policy to the one stored in the region.
invokeSolver(computeLowerBounds, policy);
//TODO: policy for games.
if(policy.empty()) return this->solverData.result[this->solverData.initialStateIndex]; //This can be deleted as soon as policy for games is supported
//TODO: (maybe) when a few parameters are mapped to another value, build a "nicer" scheduler and check whether it induces values that are more optimal.
//Get the set of parameters which are (according to the policy) always mapped to the same region boundary.
//First, collect all (relevant) parameters, i.e., the ones that are set to the lower or upper boundary.
std::map<VariableType, RegionBoundary> fixedVariables;
std::map<VariableType, std::pair<std::size_t, std::size_t>> VarCount;
std::size_t substitutionCount =0;
for(auto const& substitution : this->funcSubData.substitutions){
for( auto const& sub : substitution){
if(sub.second!= RegionBoundary::UNSPECIFIED){
fixedVariables.insert(typename std::map<VariableType, RegionBoundary>::value_type(sub.first, RegionBoundary::UNSPECIFIED));
VarCount.insert(typename std::map<VariableType, std::pair<std::size_t, std::size_t>>::value_type(sub.first, std::pair<std::size_t, std::size_t>(0,0)));
}
}
}
//Now erase the parameters that are mapped to different boundaries.
for(std::size_t rowGroup=0; rowGroup<this->matrixData.matrix.getRowGroupCount(); ++rowGroup){
std::size_t row = this->matrixData.matrix.getRowGroupIndices()[rowGroup] + policy[rowGroup];
for(std::pair<VariableType, RegionBoundary> const& sub : this->funcSubData.substitutions[this->matrixData.rowSubstitutions[row]]){
auto fixedVarIt = fixedVariables.find(sub.first);
if(fixedVarIt != fixedVariables.end() && fixedVarIt->second != sub.second){
if(fixedVarIt->second == RegionBoundary::UNSPECIFIED){
fixedVarIt->second = sub.second;
} else {
// the solution maps the current variable at least once to lower boundary and at least once to the upper boundary.
fixedVariables.erase(fixedVarIt);
}
}
auto varcountIt = VarCount.find(sub.first);
if(sub.second==RegionBoundary::LOWER){
++(varcountIt->second.first);
} else if (sub.second==RegionBoundary::UPPER){
++(varcountIt->second.second);
}
++substitutionCount;
}
if (fixedVariables.empty()){
// break;
}
}
// std::cout << "Used Approximation" << std::endl;
for (auto const& varcount : VarCount){
if(varcount.second.first > 0 && varcount.second.second > 0){
// std::cout << " Variable " << varcount.first << " has been set to lower " << varcount.second.first << " times and to upper " << varcount.second.second << " times. (total: " << substitutionCount << ")" << std::endl;
}
}
for (auto const& fixVar : fixedVariables){
//std::cout << " APPROXMODEL: variable " << fixVar.first << " is always mapped to " << fixVar.second << std::endl;
}
// std::cout << " Result is " << this->solverData.result[this->solverData.initialStateIndex] << std::endl;
return this->solverData.result[this->solverData.initialStateIndex];
}
template<typename ParametricSparseModelType, typename ConstantType>
void ApproximationModel<ParametricSparseModelType, ConstantType>::instantiate(const ParameterRegion<ParametricType>& region, bool computeLowerBounds) {
//Instantiate the substitutions
std::vector<std::map<VariableType, CoefficientType>> instantiatedSubs(this->funcSubData.substitutions.size());
std::vector<std::set<VariableType>> unspecifiedParameters(this->funcSubData.substitutions.size());
for(std::size_t substitutionIndex=0; substitutionIndex<this->funcSubData.substitutions.size(); ++substitutionIndex){
for(std::pair<VariableType, RegionBoundary> const& sub : this->funcSubData.substitutions[substitutionIndex]){
switch(sub.second){
case RegionBoundary::LOWER:
instantiatedSubs[substitutionIndex].insert(std::make_pair(sub.first, region.getLowerBound(sub.first)));
break;
case RegionBoundary::UPPER:
instantiatedSubs[substitutionIndex].insert(std::make_pair(sub.first, region.getUpperBound(sub.first)));
break;
case RegionBoundary::UNSPECIFIED:
//Insert some dummy value
instantiatedSubs[substitutionIndex].insert(std::make_pair(sub.first, storm::utility::one<CoefficientType>()));
unspecifiedParameters[substitutionIndex].insert(sub.first);
break;
default:
STORM_LOG_THROW(false, storm::exceptions::UnexpectedException, "Unexpected Type of Bound");
}
}
}
//write function+substitution results into placeholders
for(auto& functionResult : this->funcSubData.functions){
auto& funcSub = functionResult.first;
auto& result = functionResult.second;
result = computeLowerBounds ? storm::utility::infinity<ConstantType>() : storm::utility::zero<ConstantType>();
//Iterate over the different combinations of lower and upper bounds and update the min and max values
auto const& vertices=region.getVerticesOfRegion(unspecifiedParameters[funcSub.second]);
for(auto const& vertex : vertices){
//extend the substitution
for(auto const& vertexSub : vertex){
instantiatedSubs[funcSub.second][vertexSub.first]=vertexSub.second;
}
//evaluate the function
ConstantType currValue = storm::utility::region::convertNumber<ConstantType>(
storm::utility::region::evaluateFunction(
funcSub.first,
instantiatedSubs[funcSub.second]
)
);
result = computeLowerBounds ? std::min(result, currValue) : std::max(result, currValue);
}
}
//write the instantiated values to the matrix and the vector according to the assignment
for(auto& assignment : this->matrixData.assignment){
assignment.first->setValue(assignment.second);
}
for(auto& assignment : this->vectorData.assignment){
*assignment.first = assignment.second;
}
}
template<>
void ApproximationModel<storm::models::sparse::Dtmc<storm::RationalFunction>, double>::invokeSolver(bool computeLowerBounds, Policy& policy){
storm::solver::SolveGoal goal(computeLowerBounds);
std::unique_ptr<storm::solver::MinMaxLinearEquationSolver<double>> solver = storm::solver::configureMinMaxLinearEquationSolver(goal, storm::utility::solver::MinMaxLinearEquationSolverFactory<double>(), this->matrixData.matrix);
solver->setPolicyTracking();
solver->solveEquationSystem(goal.direction(), this->solverData.result, this->vectorData.vector, nullptr, nullptr, &policy);
policy = solver->getPolicy();
}
template<>
void ApproximationModel<storm::models::sparse::Mdp<storm::RationalFunction>, double>::invokeSolver(bool computeLowerBounds, Policy& policy){
storm::solver::SolveGoal player2Goal(computeLowerBounds);
std::unique_ptr<storm::solver::GameSolver<double>> solver = storm::utility::solver::GameSolverFactory<double>().create(this->solverData.player1Matrix, this->matrixData.matrix);
solver->solveGame(this->solverData.player1Goal.direction(), player2Goal.direction(), this->solverData.result, this->vectorData.vector);
}
#ifdef STORM_HAVE_CARL
template class ApproximationModel<storm::models::sparse::Dtmc<storm::RationalFunction, storm::models::sparse::StandardRewardModel<storm::RationalFunction>>, double>;
template class ApproximationModel<storm::models::sparse::Mdp<storm::RationalFunction, storm::models::sparse::StandardRewardModel<storm::RationalFunction>>, double>;
#endif
} //namespace region
}
}