You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
418 lines
32 KiB
418 lines
32 KiB
/*
|
|
* File: ApproximationModel.cpp
|
|
* Author: tim
|
|
*
|
|
* Created on August 7, 2015, 9:29 AM
|
|
*/
|
|
#include <stdint.h>
|
|
|
|
#include "src/modelchecker/region/ApproximationModel.h"
|
|
|
|
#include "src/models/sparse/Dtmc.h"
|
|
#include "src/models/sparse/Mdp.h"
|
|
#include "src/models/ModelType.h"
|
|
#include "src/models/sparse/StandardRewardModel.h"
|
|
#include "src/solver/MinMaxLinearEquationSolver.h"
|
|
#include "src/solver/GameSolver.h"
|
|
#include "src/utility/macros.h"
|
|
#include "src/utility/region.h"
|
|
#include "src/utility/solver.h"
|
|
#include "src/utility/vector.h"
|
|
#include "src/exceptions/UnexpectedException.h"
|
|
#include "src/exceptions/InvalidArgumentException.h"
|
|
#include "exceptions/NotImplementedException.h"
|
|
|
|
namespace storm {
|
|
namespace modelchecker {
|
|
namespace region {
|
|
|
|
template<typename ParametricSparseModelType, typename ConstantType>
|
|
ApproximationModel<ParametricSparseModelType, ConstantType>::ApproximationModel(ParametricSparseModelType const& parametricModel, std::shared_ptr<storm::logic::OperatorFormula> formula) {
|
|
//First some simple checks and initializations
|
|
if(formula->isProbabilityOperatorFormula()){
|
|
this->computeRewards=false;
|
|
} else if(formula->isRewardOperatorFormula()){
|
|
this->computeRewards=true;
|
|
STORM_LOG_THROW(parametricModel.getType()==storm::models::ModelType::Dtmc, storm::exceptions::InvalidArgumentException, "Approximation with rewards is only implemented for Dtmcs");
|
|
STORM_LOG_THROW(parametricModel.hasUniqueRewardModel(), storm::exceptions::InvalidArgumentException, "The rewardmodel of the approximation model should be unique");
|
|
STORM_LOG_THROW(parametricModel.getUniqueRewardModel()->second.hasOnlyStateRewards(), storm::exceptions::InvalidArgumentException, "The rewardmodel of the approximation model should have state rewards only");
|
|
} else {
|
|
STORM_LOG_THROW(false, storm::exceptions::InvalidArgumentException, "Invalid formula: " << formula << ". Approximation model only supports eventually or reachability reward formulae.");
|
|
}
|
|
this->solverData.player1Goal = storm::solver::SolveGoal(storm::logic::isLowerBound(formula->getComparisonType()));
|
|
STORM_LOG_THROW(parametricModel.hasLabel("target"), storm::exceptions::InvalidArgumentException, "The given Model has no \"target\"-statelabel.");
|
|
this->targetStates = parametricModel.getStateLabeling().getStates("target");
|
|
STORM_LOG_THROW(parametricModel.hasLabel("sink"), storm::exceptions::InvalidArgumentException, "The given Model has no \"sink\"-statelabel.");
|
|
storm::storage::BitVector sinkStates=parametricModel.getStateLabeling().getStates("sink");
|
|
this->maybeStates = ~(this->targetStates | sinkStates);
|
|
STORM_LOG_THROW(parametricModel.getInitialStates().getNumberOfSetBits()==1, storm::exceptions::InvalidArgumentException, "The given model has more or less then one initial state");
|
|
storm::storage::sparse::state_type initialState = *parametricModel.getInitialStates().begin();
|
|
STORM_LOG_THROW(maybeStates.get(initialState), storm::exceptions::InvalidArgumentException, "The value in the initial state of the given model is independent of parameters");
|
|
//The (state-)indices in the equation system will be different from the original ones, as the eq-sys only considers maybestates.
|
|
//Hence, we use this vector to translate from old indices to new ones.
|
|
std::vector<std::size_t> newIndices(parametricModel.getNumberOfStates(), parametricModel.getNumberOfStates()); //initialize with some illegal index
|
|
std::size_t newIndex=0;
|
|
for(auto const& index : maybeStates){
|
|
newIndices[index]=newIndex;
|
|
++newIndex;
|
|
}
|
|
|
|
//Now pre-compute the information for the equation system.
|
|
initializeProbabilities(parametricModel, newIndices);
|
|
if(this->computeRewards){
|
|
initializeRewards(parametricModel, newIndices);
|
|
}
|
|
this->matrixData.assignment.shrink_to_fit();
|
|
this->vectorData.assignment.shrink_to_fit();
|
|
if(parametricModel.getType()==storm::models::ModelType::Mdp){
|
|
initializePlayer1Matrix(parametricModel);
|
|
}
|
|
|
|
this->solverData.result = std::vector<ConstantType>(maybeStates.getNumberOfSetBits(), this->computeRewards ? storm::utility::one<ConstantType>() : ConstantType(0.5));
|
|
this->solverData.initialStateIndex = newIndices[initialState];
|
|
this->solverData.lastMinimizingPolicy = Policy(this->matrixData.matrix.getRowGroupCount(), 0);
|
|
this->solverData.lastMaximizingPolicy = Policy(this->matrixData.matrix.getRowGroupCount(), 0);
|
|
this->solverData.lastPlayer1Policy = Policy(this->matrixData.matrix.getRowGroupCount(), 0);
|
|
}
|
|
|
|
template<typename ParametricSparseModelType, typename ConstantType>
|
|
void ApproximationModel<ParametricSparseModelType, ConstantType>::initializeProbabilities(ParametricSparseModelType const& parametricModel, std::vector<std::size_t> const& newIndices) {
|
|
STORM_LOG_DEBUG("Approximation model initialization for probabilities");
|
|
/* First run: get a matrix with dummy entries at the new positions.
|
|
* This matrix will have a row group for every row in the original matrix,
|
|
* each rowgroup containing 2^#par rows, where #par is the number of parameters that occur in the original row.
|
|
* We also store the substitution that needs to be applied for each row.
|
|
*/
|
|
ConstantType dummyValue = storm::utility::one<ConstantType>();
|
|
storm::storage::SparseMatrixBuilder<ConstantType> matrixBuilder(0, //Unknown number of rows
|
|
this->maybeStates.getNumberOfSetBits(), //columns
|
|
0, //Unknown number of entries
|
|
true, // force dimensions
|
|
true, //will have custom row grouping
|
|
0); //Unknown number of rowgroups
|
|
this->matrixData.rowSubstitutions.reserve(this->maybeStates.getNumberOfSetBits());
|
|
storm::storage::BitVector relevantColumns = this->computeRewards ? this->maybeStates : (this->maybeStates | this->targetStates);
|
|
std::size_t curRow = 0;
|
|
for (auto oldRowGroup : this->maybeStates){
|
|
for (std::size_t oldRow = parametricModel.getTransitionMatrix().getRowGroupIndices()[oldRowGroup]; oldRow < parametricModel.getTransitionMatrix().getRowGroupIndices()[oldRowGroup+1]; ++oldRow){
|
|
matrixBuilder.newRowGroup(curRow);
|
|
// Find the different substitutions, i.e., mappings from Variables that occur in this row to {lower, upper}
|
|
std::set<VariableType> occurringVariables;
|
|
for(auto const& oldEntry : parametricModel.getTransitionMatrix().getRow(oldRow)){
|
|
if(relevantColumns.get(oldEntry.getColumn())){
|
|
storm::utility::region::gatherOccurringVariables(oldEntry.getValue(), occurringVariables);
|
|
}
|
|
}
|
|
uint_fast64_t numOfSubstitutions=1ull<<occurringVariables.size(); //=2^(#variables). Note that there is still 1 substitution when #variables==0 (the empty substitution)
|
|
for(uint_fast64_t substitutionId=0ull; substitutionId<numOfSubstitutions; ++substitutionId){
|
|
//compute actual substitution from substitutionId by interpreting the Id as a bit sequence.
|
|
//the occurringVariables.size() least significant bits of substitutionId will represent the substitution that we have to consider
|
|
//(00...0 = lower bounds for all parameters, 11...1 = upper bounds for all parameters)
|
|
std::map<VariableType, RegionBoundary> currSubstitution;
|
|
std::size_t parameterIndex=0ull;
|
|
for(auto const& parameter : occurringVariables){
|
|
if((substitutionId>>parameterIndex)%2==0){
|
|
currSubstitution.insert(typename std::map<VariableType, RegionBoundary>::value_type(parameter, RegionBoundary::LOWER));
|
|
}
|
|
else{
|
|
currSubstitution.insert(typename std::map<VariableType, RegionBoundary>::value_type(parameter, RegionBoundary::UPPER));
|
|
}
|
|
++parameterIndex;
|
|
}
|
|
std::size_t substitutionIndex=storm::utility::vector::findOrInsert(this->funcSubData.substitutions, std::move(currSubstitution));
|
|
this->matrixData.rowSubstitutions.push_back(substitutionIndex);
|
|
//For every substitution, run again through the row and add a dummy entry
|
|
//Note that this is still executed once, even if no parameters occur.
|
|
for(auto const& oldEntry : parametricModel.getTransitionMatrix().getRow(oldRow)){
|
|
if(this->maybeStates.get(oldEntry.getColumn())){
|
|
matrixBuilder.addNextValue(curRow, newIndices[oldEntry.getColumn()], dummyValue);
|
|
}
|
|
}
|
|
++curRow;
|
|
}
|
|
}
|
|
}
|
|
//Build the matrix. Override the row count (required e.g. when there are only transitions to target for the last matrixrow)
|
|
this->matrixData.matrix=matrixBuilder.build(this->matrixData.rowSubstitutions.size());
|
|
|
|
//Now run again through both matrices to get the remaining ingredients of the matrixData and vectorData
|
|
this->matrixData.assignment.reserve(this->matrixData.matrix.getEntryCount());
|
|
this->vectorData.vector = std::vector<ConstantType>(this->matrixData.matrix.getRowCount()); //Important to initialize here since iterators have to remain valid
|
|
auto vectorIt = this->vectorData.vector.begin();
|
|
this->vectorData.assignment.reserve(vectorData.vector.size());
|
|
std::size_t curRowGroup = 0;
|
|
for(auto oldRowGroup : this->maybeStates){
|
|
for (std::size_t oldRow = parametricModel.getTransitionMatrix().getRowGroupIndices()[oldRowGroup]; oldRow < parametricModel.getTransitionMatrix().getRowGroupIndices()[oldRowGroup+1]; ++oldRow){
|
|
ParametricType targetProbability = storm::utility::region::getNewFunction<ParametricType, CoefficientType>(storm::utility::zero<CoefficientType>());
|
|
if(!this->computeRewards){
|
|
for(auto const& oldEntry : parametricModel.getTransitionMatrix().getRow(oldRow)){
|
|
if(this->targetStates.get(oldEntry.getColumn())){
|
|
targetProbability += oldEntry.getValue();
|
|
}
|
|
}
|
|
}
|
|
//Recall: Every row in the old matrix has a row group in the newly created one.
|
|
//We will now run through every row that belongs to the rowGroup associated with oldRow.
|
|
for (curRow = this->matrixData.matrix.getRowGroupIndices()[curRowGroup]; curRow < this->matrixData.matrix.getRowGroupIndices()[curRowGroup+1]; ++curRow){
|
|
auto eqSysMatrixEntry = this->matrixData.matrix.getRow(curRow).begin();
|
|
for(auto const& oldEntry : parametricModel.getTransitionMatrix().getRow(oldRow)){
|
|
if(this->maybeStates.get(oldEntry.getColumn())){
|
|
STORM_LOG_THROW(eqSysMatrixEntry->getColumn()==newIndices[oldEntry.getColumn()], storm::exceptions::UnexpectedException, "old and new entries do not match");
|
|
if(storm::utility::isConstant(oldEntry.getValue())){
|
|
eqSysMatrixEntry->setValue(storm::utility::region::convertNumber<ConstantType>(storm::utility::region::getConstantPart(oldEntry.getValue())));
|
|
} else {
|
|
auto functionsIt = this->funcSubData.functions.insert(FunctionEntry(FunctionSubstitution(oldEntry.getValue(), this->matrixData.rowSubstitutions[curRow]), dummyValue)).first;
|
|
this->matrixData.assignment.emplace_back(eqSysMatrixEntry, functionsIt->second);
|
|
//Note that references to elements of an unordered map remain valid after calling unordered_map::insert.
|
|
}
|
|
++eqSysMatrixEntry;
|
|
}
|
|
}
|
|
if(!this->computeRewards){
|
|
if(storm::utility::isConstant(storm::utility::simplify(targetProbability))){
|
|
*vectorIt = storm::utility::region::convertNumber<ConstantType>(storm::utility::region::getConstantPart(targetProbability));
|
|
} else {
|
|
auto functionsIt = this->funcSubData.functions.insert(FunctionEntry(FunctionSubstitution(targetProbability, this->matrixData.rowSubstitutions[curRow]), dummyValue)).first;
|
|
this->vectorData.assignment.emplace_back(vectorIt, functionsIt->second);
|
|
*vectorIt = dummyValue;
|
|
}
|
|
}
|
|
++vectorIt;
|
|
}
|
|
++curRowGroup;
|
|
}
|
|
}
|
|
STORM_LOG_THROW(vectorIt==this->vectorData.vector.end(), storm::exceptions::UnexpectedException, "initProbs: The size of the eq-sys vector is not as it was expected");
|
|
this->matrixData.matrix.updateNonzeroEntryCount();
|
|
}
|
|
|
|
template<typename ParametricSparseModelType, typename ConstantType>
|
|
void ApproximationModel<ParametricSparseModelType, ConstantType>::initializeRewards(ParametricSparseModelType const& parametricModel, std::vector<std::size_t> const& newIndices){
|
|
STORM_LOG_DEBUG("Approximation model initialization for Rewards");
|
|
STORM_LOG_THROW(parametricModel.getType()==storm::models::ModelType::Dtmc, storm::exceptions::InvalidArgumentException, "Rewards are only supported for DTMCs (yet)");
|
|
//Note: Since the original model is assumed to be a DTMC, there is no outgoing transition of a maybeState that leads to an infinity state.
|
|
//Hence, we do not have to set entries of the eqSys vector to infinity (as it would be required for mdp model checking...)
|
|
STORM_LOG_THROW(this->vectorData.vector.size()==this->matrixData.matrix.getRowCount(), storm::exceptions::UnexpectedException, "The size of the eq-sys vector does not match to the number of rows in the eq-sys matrix");
|
|
this->vectorData.assignment.reserve(vectorData.vector.size());
|
|
|
|
// run through the state reward vector of the parametric model.
|
|
// Constant entries can be set directly.
|
|
// For Parametric entries we set a dummy value and insert the corresponding function and the assignment
|
|
ConstantType dummyValue = storm::utility::one<ConstantType>();
|
|
auto vectorIt = this->vectorData.vector.begin();
|
|
for(auto oldState : this->maybeStates){
|
|
if(storm::utility::isConstant(parametricModel.getUniqueRewardModel()->second.getStateRewardVector()[oldState])){
|
|
ConstantType reward = storm::utility::region::convertNumber<ConstantType>(storm::utility::region::getConstantPart(parametricModel.getUniqueRewardModel()->second.getStateRewardVector()[oldState]));
|
|
//Add one of these entries for every row in the row group of oldState
|
|
for(auto matrixRow=this->matrixData.matrix.getRowGroupIndices()[oldState]; matrixRow<this->matrixData.matrix.getRowGroupIndices()[oldState+1]; ++matrixRow){
|
|
*vectorIt = reward;
|
|
++vectorIt;
|
|
}
|
|
} else {
|
|
std::set<VariableType> occurringRewVariables;
|
|
storm::utility::region::gatherOccurringVariables(parametricModel.getUniqueRewardModel()->second.getStateRewardVector()[oldState], occurringRewVariables);
|
|
// For each row in the row group of oldState, we get the corresponding substitution and insert the FunctionSubstitution
|
|
for(auto matrixRow=this->matrixData.matrix.getRowGroupIndices()[oldState]; matrixRow<this->matrixData.matrix.getRowGroupIndices()[oldState+1]; ++matrixRow){
|
|
//Extend the substitution for the probabilities with the reward parameters
|
|
auto& substitution = this->funcSubData.substitutions[this->matrixData.rowSubstitutions[matrixRow]];
|
|
for(auto const& rewardVar : occurringRewVariables){
|
|
//Note that map::insert does nothing if rewardVar is already contained in the substitution (i.e. if rewardVar also occurs in the probability functions)
|
|
substitution.insert(typename std::map<VariableType, RegionBoundary>::value_type(rewardVar, RegionBoundary::UNSPECIFIED));
|
|
}
|
|
// insert the FunctionSubstitution
|
|
auto functionsIt = this->funcSubData.functions.insert(FunctionEntry(FunctionSubstitution(parametricModel.getUniqueRewardModel()->second.getStateRewardVector()[oldState], this->matrixData.rowSubstitutions[matrixRow]), dummyValue)).first;
|
|
//insert assignment and dummy data
|
|
this->vectorData.assignment.emplace_back(vectorIt, functionsIt->second);
|
|
*vectorIt = dummyValue;
|
|
++vectorIt;
|
|
}
|
|
}
|
|
}
|
|
STORM_LOG_THROW(vectorIt==this->vectorData.vector.end(), storm::exceptions::UnexpectedException, "initRewards: The size of the eq-sys vector is not as it was expected");
|
|
}
|
|
|
|
template<typename ParametricSparseModelType, typename ConstantType>
|
|
void ApproximationModel<ParametricSparseModelType, ConstantType>::initializePlayer1Matrix(ParametricSparseModelType const& parametricModel){
|
|
std::size_t p1MatrixSize = matrixData.matrix.getRowGroupCount();
|
|
storm::storage::SparseMatrixBuilder<storm::storage::sparse::state_type> matrixBuilder(p1MatrixSize, //rows
|
|
p1MatrixSize, //columns
|
|
p1MatrixSize, //entries
|
|
true, // force dimensions
|
|
true, //will have custom row grouping
|
|
this->maybeStates.getNumberOfSetBits()); // number of rowgroups
|
|
std::size_t curRow = 0;
|
|
for (auto oldRowGroup : this->maybeStates){
|
|
matrixBuilder.newRowGroup(curRow);
|
|
for (std::size_t oldRow = parametricModel.getTransitionMatrix().getRowGroupIndices()[oldRowGroup]; oldRow < parametricModel.getTransitionMatrix().getRowGroupIndices()[oldRowGroup+1]; ++oldRow){
|
|
matrixBuilder.addNextValue(curRow,curRow, storm::utility::one<storm::storage::sparse::state_type>());
|
|
++curRow;
|
|
}
|
|
}
|
|
this->solverData.player1Matrix = matrixBuilder.build();
|
|
}
|
|
|
|
template<typename ParametricSparseModelType, typename ConstantType>
|
|
ApproximationModel<ParametricSparseModelType, ConstantType>::~ApproximationModel() {
|
|
//Intentionally left empty
|
|
}
|
|
|
|
template<typename ParametricSparseModelType, typename ConstantType>
|
|
std::vector<ConstantType> ApproximationModel<ParametricSparseModelType, ConstantType>::computeValues(ParameterRegion<ParametricType> const& region, bool computeLowerBounds) {
|
|
instantiate(region, computeLowerBounds);
|
|
std::vector<std::size_t> policy;
|
|
invokeSolver(computeLowerBounds, policy);
|
|
|
|
std::vector<ConstantType> result(this->maybeStates.size());
|
|
storm::utility::vector::setVectorValues(result, this->maybeStates, this->solverData.result);
|
|
storm::utility::vector::setVectorValues(result, this->targetStates, this->computeRewards ? storm::utility::zero<ConstantType>() : storm::utility::one<ConstantType>());
|
|
storm::utility::vector::setVectorValues(result, ~(this->maybeStates | this->targetStates), this->computeRewards ? storm::utility::infinity<ConstantType>() : storm::utility::zero<ConstantType>());
|
|
|
|
return result;
|
|
}
|
|
|
|
template<typename ParametricSparseModelType, typename ConstantType>
|
|
ConstantType ApproximationModel<ParametricSparseModelType, ConstantType>::computeInitialStateValue(ParameterRegion<ParametricType> const& region, bool computeLowerBounds) {
|
|
instantiate(region, computeLowerBounds);
|
|
Policy& policy = computeLowerBounds ? this->solverData.lastMinimizingPolicy : this->solverData.lastMaximizingPolicy;
|
|
//TODO: at this point, set policy to the one stored in the region.
|
|
invokeSolver(computeLowerBounds, policy);
|
|
|
|
//TODO: policy for games.
|
|
if(policy.empty()) return this->solverData.result[this->solverData.initialStateIndex]; //This can be deleted as soon as policy for games is supported
|
|
//TODO: (maybe) when a few parameters are mapped to another value, build a "nicer" scheduler and check whether it induces values that are more optimal.
|
|
//Get the set of parameters which are (according to the policy) always mapped to the same region boundary.
|
|
//First, collect all (relevant) parameters, i.e., the ones that are set to the lower or upper boundary.
|
|
std::map<VariableType, RegionBoundary> fixedVariables;
|
|
std::map<VariableType, std::pair<std::size_t, std::size_t>> VarCount;
|
|
std::size_t substitutionCount =0;
|
|
for(auto const& substitution : this->funcSubData.substitutions){
|
|
for( auto const& sub : substitution){
|
|
if(sub.second!= RegionBoundary::UNSPECIFIED){
|
|
fixedVariables.insert(typename std::map<VariableType, RegionBoundary>::value_type(sub.first, RegionBoundary::UNSPECIFIED));
|
|
VarCount.insert(typename std::map<VariableType, std::pair<std::size_t, std::size_t>>::value_type(sub.first, std::pair<std::size_t, std::size_t>(0,0)));
|
|
}
|
|
}
|
|
}
|
|
//Now erase the parameters that are mapped to different boundaries.
|
|
for(std::size_t rowGroup=0; rowGroup<this->matrixData.matrix.getRowGroupCount(); ++rowGroup){
|
|
std::size_t row = this->matrixData.matrix.getRowGroupIndices()[rowGroup] + policy[rowGroup];
|
|
for(std::pair<VariableType, RegionBoundary> const& sub : this->funcSubData.substitutions[this->matrixData.rowSubstitutions[row]]){
|
|
auto fixedVarIt = fixedVariables.find(sub.first);
|
|
if(fixedVarIt != fixedVariables.end() && fixedVarIt->second != sub.second){
|
|
if(fixedVarIt->second == RegionBoundary::UNSPECIFIED){
|
|
fixedVarIt->second = sub.second;
|
|
} else {
|
|
// the solution maps the current variable at least once to lower boundary and at least once to the upper boundary.
|
|
fixedVariables.erase(fixedVarIt);
|
|
}
|
|
}
|
|
auto varcountIt = VarCount.find(sub.first);
|
|
if(sub.second==RegionBoundary::LOWER){
|
|
++(varcountIt->second.first);
|
|
} else if (sub.second==RegionBoundary::UPPER){
|
|
++(varcountIt->second.second);
|
|
}
|
|
++substitutionCount;
|
|
}
|
|
if (fixedVariables.empty()){
|
|
// break;
|
|
}
|
|
}
|
|
// std::cout << "Used Approximation" << std::endl;
|
|
for (auto const& varcount : VarCount){
|
|
if(varcount.second.first > 0 && varcount.second.second > 0){
|
|
// std::cout << " Variable " << varcount.first << " has been set to lower " << varcount.second.first << " times and to upper " << varcount.second.second << " times. (total: " << substitutionCount << ")" << std::endl;
|
|
}
|
|
}
|
|
for (auto const& fixVar : fixedVariables){
|
|
//std::cout << " APPROXMODEL: variable " << fixVar.first << " is always mapped to " << fixVar.second << std::endl;
|
|
}
|
|
|
|
// std::cout << " Result is " << this->solverData.result[this->solverData.initialStateIndex] << std::endl;
|
|
return this->solverData.result[this->solverData.initialStateIndex];
|
|
}
|
|
|
|
template<typename ParametricSparseModelType, typename ConstantType>
|
|
void ApproximationModel<ParametricSparseModelType, ConstantType>::instantiate(const ParameterRegion<ParametricType>& region, bool computeLowerBounds) {
|
|
//Instantiate the substitutions
|
|
std::vector<std::map<VariableType, CoefficientType>> instantiatedSubs(this->funcSubData.substitutions.size());
|
|
std::vector<std::set<VariableType>> unspecifiedParameters(this->funcSubData.substitutions.size());
|
|
for(std::size_t substitutionIndex=0; substitutionIndex<this->funcSubData.substitutions.size(); ++substitutionIndex){
|
|
for(std::pair<VariableType, RegionBoundary> const& sub : this->funcSubData.substitutions[substitutionIndex]){
|
|
switch(sub.second){
|
|
case RegionBoundary::LOWER:
|
|
instantiatedSubs[substitutionIndex].insert(std::make_pair(sub.first, region.getLowerBound(sub.first)));
|
|
break;
|
|
case RegionBoundary::UPPER:
|
|
instantiatedSubs[substitutionIndex].insert(std::make_pair(sub.first, region.getUpperBound(sub.first)));
|
|
break;
|
|
case RegionBoundary::UNSPECIFIED:
|
|
//Insert some dummy value
|
|
instantiatedSubs[substitutionIndex].insert(std::make_pair(sub.first, storm::utility::one<CoefficientType>()));
|
|
unspecifiedParameters[substitutionIndex].insert(sub.first);
|
|
break;
|
|
default:
|
|
STORM_LOG_THROW(false, storm::exceptions::UnexpectedException, "Unexpected Type of Bound");
|
|
}
|
|
}
|
|
}
|
|
|
|
//write function+substitution results into placeholders
|
|
for(auto& functionResult : this->funcSubData.functions){
|
|
auto& funcSub = functionResult.first;
|
|
auto& result = functionResult.second;
|
|
result = computeLowerBounds ? storm::utility::infinity<ConstantType>() : storm::utility::zero<ConstantType>();
|
|
//Iterate over the different combinations of lower and upper bounds and update the min and max values
|
|
auto const& vertices=region.getVerticesOfRegion(unspecifiedParameters[funcSub.second]);
|
|
for(auto const& vertex : vertices){
|
|
//extend the substitution
|
|
for(auto const& vertexSub : vertex){
|
|
instantiatedSubs[funcSub.second][vertexSub.first]=vertexSub.second;
|
|
}
|
|
//evaluate the function
|
|
ConstantType currValue = storm::utility::region::convertNumber<ConstantType>(
|
|
storm::utility::region::evaluateFunction(
|
|
funcSub.first,
|
|
instantiatedSubs[funcSub.second]
|
|
)
|
|
);
|
|
result = computeLowerBounds ? std::min(result, currValue) : std::max(result, currValue);
|
|
}
|
|
}
|
|
|
|
//write the instantiated values to the matrix and the vector according to the assignment
|
|
for(auto& assignment : this->matrixData.assignment){
|
|
assignment.first->setValue(assignment.second);
|
|
}
|
|
for(auto& assignment : this->vectorData.assignment){
|
|
*assignment.first = assignment.second;
|
|
}
|
|
}
|
|
|
|
|
|
template<>
|
|
void ApproximationModel<storm::models::sparse::Dtmc<storm::RationalFunction>, double>::invokeSolver(bool computeLowerBounds, Policy& policy){
|
|
storm::solver::SolveGoal goal(computeLowerBounds);
|
|
std::unique_ptr<storm::solver::MinMaxLinearEquationSolver<double>> solver = storm::solver::configureMinMaxLinearEquationSolver(goal, storm::utility::solver::MinMaxLinearEquationSolverFactory<double>(), this->matrixData.matrix);
|
|
solver->setPolicyTracking();
|
|
solver->solveEquationSystem(goal.direction(), this->solverData.result, this->vectorData.vector, nullptr, nullptr, &policy);
|
|
policy = solver->getPolicy();
|
|
}
|
|
|
|
template<>
|
|
void ApproximationModel<storm::models::sparse::Mdp<storm::RationalFunction>, double>::invokeSolver(bool computeLowerBounds, Policy& policy){
|
|
storm::solver::SolveGoal player2Goal(computeLowerBounds);
|
|
std::unique_ptr<storm::solver::GameSolver<double>> solver = storm::utility::solver::GameSolverFactory<double>().create(this->solverData.player1Matrix, this->matrixData.matrix);
|
|
solver->solveGame(this->solverData.player1Goal.direction(), player2Goal.direction(), this->solverData.result, this->vectorData.vector);
|
|
}
|
|
|
|
|
|
|
|
|
|
#ifdef STORM_HAVE_CARL
|
|
template class ApproximationModel<storm::models::sparse::Dtmc<storm::RationalFunction, storm::models::sparse::StandardRewardModel<storm::RationalFunction>>, double>;
|
|
template class ApproximationModel<storm::models::sparse::Mdp<storm::RationalFunction, storm::models::sparse::StandardRewardModel<storm::RationalFunction>>, double>;
|
|
#endif
|
|
} //namespace region
|
|
}
|
|
}
|