You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

2458 lines
101 KiB

/* /////////////////////////////////////////////////////////////////////////
* File: stlsoft/containers/fixed_array.hpp
*
* Purpose: Contains the fixed_array_1d, fixed_array_2d, fixed_array_3d,
* fixed_array_4d template classes.
*
* Created: 4th August 1998
* Updated: 10th August 2009
*
* Thanks to: Neal Becker for suggesting the uninitialised mode,
* requesting the function call operator, and for requesting
* the with-allocator constructor overloads.
*
* Thorsten Ottosen for suggesting swap() and mutating data(),
* and for providing suggested implementations.
*
* Home: http://stlsoft.org/
*
* Copyright (c) 1998-2009, Matthew Wilson and Synesis Software
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* - Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* - Neither the name(s) of Matthew Wilson and Synesis Software nor the
* names of any contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
* IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* ////////////////////////////////////////////////////////////////////// */
/** \file stlsoft/containers/fixed_array.hpp
*
* \brief [C++ only] Definition of the stlsoft::fixed_array_1d,
* stlsoft::fixed_array_2d, stlsoft::fixed_array_3d, and
* stlsoft::fixed_array_4d multidimensional array class templates
* (\ref group__library__containers "Containers" Library).
*/
#ifndef STLSOFT_INCL_STLSOFT_CONTAINERS_HPP_FIXED_ARRAY
#define STLSOFT_INCL_STLSOFT_CONTAINERS_HPP_FIXED_ARRAY
#ifndef STLSOFT_DOCUMENTATION_SKIP_SECTION
# define STLSOFT_VER_STLSOFT_CONTAINERS_HPP_FIXED_ARRAY_MAJOR 4
# define STLSOFT_VER_STLSOFT_CONTAINERS_HPP_FIXED_ARRAY_MINOR 9
# define STLSOFT_VER_STLSOFT_CONTAINERS_HPP_FIXED_ARRAY_REVISION 5
# define STLSOFT_VER_STLSOFT_CONTAINERS_HPP_FIXED_ARRAY_EDIT 191
#endif /* !STLSOFT_DOCUMENTATION_SKIP_SECTION */
/* /////////////////////////////////////////////////////////////////////////
* Compatibility
*/
/*
[Incompatibilies-start]
STLSOFT_COMPILER_IS_MSVC: _MSC_VER<1200
STLSOFT_COMPILER_IS_WATCOM:
[Incompatibilies-end]
*/
/* /////////////////////////////////////////////////////////////////////////
* Includes
*/
#ifndef STLSOFT_INCL_STLSOFT_H_STLSOFT
# include <stlsoft/stlsoft.h>
#endif /* !STLSOFT_INCL_STLSOFT_H_STLSOFT */
#if defined(STLSOFT_COMPILER_IS_MSVC) && \
_MSC_VER < 1200
# error stlsoft/containers/fixed_array.hpp is not compatible with Visual C++ 5.0 or earlier
#endif /* compiler */
#ifndef STLSOFT_INCL_STLSOFT_MEMORY_HPP_ALLOCATOR_SELECTOR
# include <stlsoft/memory/allocator_selector.hpp>
#endif /* !STLSOFT_INCL_STLSOFT_MEMORY_HPP_ALLOCATOR_SELECTOR */
#ifndef STLSOFT_INCL_STLSOFT_UTIL_STD_HPP_ITERATOR_HELPER
# include <stlsoft/util/std/iterator_helper.hpp>
#endif /* !STLSOFT_INCL_STLSOFT_UTIL_STD_HPP_ITERATOR_HELPER */
#ifndef STLSOFT_INCL_STLSOFT_CONTAINERS_UTIL_HPP_ARRAY_POLICIES
# include <stlsoft/containers/util/array_policies.hpp> // for stlsoft::do_construction()
#endif /* !STLSOFT_INCL_STLSOFT_CONTAINERS_UTIL_HPP_ARRAY_POLICIES */
#ifndef STLSOFT_INCL_STLSOFT_META_HPP_CAPABILITIES
# include <stlsoft/meta/capabilities.hpp>
#endif /* !STLSOFT_INCL_STLSOFT_META_HPP_CAPABILITIES */
#ifndef STLSOFT_INCL_STLSOFT_COLLECTIONS_UTIL_HPP_COLLECTIONS
# include <stlsoft/collections/util/collections.hpp>
#endif /* !STLSOFT_INCL_STLSOFT_COLLECTIONS_UTIL_HPP_COLLECTIONS */
#ifndef STLSOFT_INCL_STLSOFT_UTIL_HPP_STD_SWAP
# include <stlsoft/util/std_swap.hpp>
#endif /* !STLSOFT_INCL_STLSOFT_UTIL_HPP_STD_SWAP */
#if defined(STLSOFT_COMPILER_IS_MSVC) && \
defined(STLSOFT_CF_STD_LIBRARY_IS_STLPORT)
# ifndef STLSOFT_INCL_STRING
# define STLSOFT_INCL_STRING
# include <string> // for std::string - sigh!
# endif /* !STLSOFT_INCL_STRING */
#endif /* compiler */
#ifndef STLSOFT_INCL_STDEXCEPT
# define STLSOFT_INCL_STDEXCEPT
# include <stdexcept> // for std::out_of_range
#endif /* !STLSOFT_INCL_STDEXCEPT */
/* /////////////////////////////////////////////////////////////////////////
* Namespace
*/
#ifndef _STLSOFT_NO_NAMESPACE
namespace stlsoft
{
#endif /* _STLSOFT_NO_NAMESPACE */
/* /////////////////////////////////////////////////////////////////////////
* Forward declarations
*/
#ifndef STLSOFT_DOCUMENTATION_SKIP_SECTION
template< ss_typename_param_k T
, ss_typename_param_k A
, ss_typename_param_k P
, ss_bool_t R
>
class fixed_array_1d;
template< ss_typename_param_k T
, ss_typename_param_k A
, ss_typename_param_k P
, ss_bool_t R
>
class fixed_array_2d;
template< ss_typename_param_k T
, ss_typename_param_k A
, ss_typename_param_k P
, ss_bool_t R
>
class fixed_array_3d;
template< ss_typename_param_k T
, ss_typename_param_k A
, ss_typename_param_k P
, ss_bool_t R
>
class fixed_array_4d;
template< ss_typename_param_k T
, ss_typename_param_k A
, ss_typename_param_k P
, ss_bool_t R
>
class fixed_array_5d;
#endif /* !STLSOFT_DOCUMENTATION_SKIP_SECTION */
/* /////////////////////////////////////////////////////////////////////////
* Classes
*/
/** \brief 1 dimensional fixed array
*
* \ingroup group__library__containers
*
* \param T The value type
* \param A The allocator type
* \param P The construction policy type
*/
template< ss_typename_param_k T
#ifdef STLSOFT_CF_TEMPLATE_CLASS_DEFAULT_CLASS_ARGUMENT_SUPPORT
, ss_typename_param_k A = ss_typename_type_def_k allocator_selector<T>::allocator_type
, ss_typename_param_k P = do_construction<T>
, ss_bool_t R = true
#else /* ? STLSOFT_CF_TEMPLATE_CLASS_DEFAULT_CLASS_ARGUMENT_SUPPORT */
, ss_typename_param_k A
, ss_typename_param_k P
, ss_typename_param_k R
#endif /* STLSOFT_CF_TEMPLATE_CLASS_DEFAULT_CLASS_ARGUMENT_SUPPORT */
>
// class fixed_array_1d
class fixed_array_1d
: protected A
, public stl_collection_tag
{
public:
typedef fixed_array_1d<T, A, P, R> class_type;
typedef T dimension_element_type;
typedef /* const */ dimension_element_type const_dimension_element_type;
typedef A allocator_type;
typedef T value_type;
typedef value_type& reference;
typedef value_type const& const_reference;
typedef value_type* pointer;
typedef value_type const* const_pointer;
typedef ss_size_t size_type;
typedef ss_size_t index_type;
typedef ss_ptrdiff_t difference_type;
typedef ss_bool_t bool_type;
typedef
#if !defined(STLSOFT_COMPILER_IS_BORLAND)
ss_typename_type_k
#endif /* compiler */
pointer_iterator < value_type
, pointer
, reference
>::type iterator;
typedef
#if !defined(STLSOFT_COMPILER_IS_BORLAND)
ss_typename_type_k
#endif /* compiler */
pointer_iterator < value_type const
, const_pointer
, const_reference
>::type const_iterator;
#if defined(STLSOFT_LF_BIDIRECTIONAL_ITERATOR_SUPPORT)
typedef reverse_iterator_base < iterator
, value_type
, reference
, pointer
, difference_type
> reverse_iterator;
typedef const_reverse_iterator_base < const_iterator
, value_type const
, const_reference
, const_pointer
, difference_type
> const_reverse_iterator;
#endif /* STLSOFT_LF_BIDIRECTIONAL_ITERATOR_SUPPORT */
// Construction
private:
fixed_array_1d(T *data, index_type d0);
public:
ss_explicit_k fixed_array_1d(index_type d0);
fixed_array_1d(index_type d0, allocator_type const& ator);
fixed_array_1d(index_type d0, value_type const& t);
fixed_array_1d(index_type d0, value_type const& t, allocator_type const& ator);
fixed_array_1d(class_type const& rhs);
~fixed_array_1d() stlsoft_throw_0();
allocator_type get_allocator() const;
void swap(class_type& rhs) stlsoft_throw_0();
// Access
public:
reference at(index_type i0);
const_reference at(index_type i0) const;
reference at_unchecked(index_type i0);
const_reference at_unchecked(index_type i0) const;
#ifndef STLSOFT_FIXED_ARRAY_NO_FUNCTION_OP
reference operator ()(index_type i0);
const_reference operator ()(index_type i0) const;
#endif /* !STLSOFT_FIXED_ARRAY_NO_FUNCTION_OP */
reference operator [](index_type i0);
const_reference operator [](index_type i0) const;
/// Providing the evil operator, in order to support &ar[0]
// pointer operator &();
/// Providing the evil operator, in order to support &ar[0]
// const_pointer operator &() const;
reference front();
reference back();
const_reference front() const;
const_reference back() const;
// State
public:
index_type dimension0() const;
index_type size() const;
bool_type empty() const;
static size_type max_size();
// Iteration
public:
iterator begin();
iterator end();
const_iterator begin() const;
const_iterator end() const;
#if defined(STLSOFT_LF_BIDIRECTIONAL_ITERATOR_SUPPORT)
reverse_iterator rbegin();
reverse_iterator rend();
const_reverse_iterator rbegin() const;
const_reverse_iterator rend() const;
#endif /* STLSOFT_LF_BIDIRECTIONAL_ITERATOR_SUPPORT */
// Access
public:
pointer data();
const_pointer data() const;
// Implementation
private:
pointer allocate_(size_type n);
void deallocate_(pointer p, size_type n);
pointer data_();
index_type calc_index_(index_type i0) const;
void range_check_(index_type i0) const stlsoft_throw_1(stlsoft_ns_qual_std(out_of_range) );
allocator_type& get_allocator_();
// Members
private:
T* m_data;
index_type m_d0;
friend class fixed_array_2d<T, A, P, true>;
friend class fixed_array_2d<T, A, P, false>;
// Not to be implemented
private:
class_type const& operator =(class_type const& rhs);
};
/** \brief 2 dimensional fixed array
*
* \ingroup group__library__containers
*
* \param T The value type
* \param A The allocator type
* \param P The construction policy type
*/
template< ss_typename_param_k T
#ifdef STLSOFT_CF_TEMPLATE_CLASS_DEFAULT_CLASS_ARGUMENT_SUPPORT
, ss_typename_param_k A = ss_typename_type_def_k allocator_selector<T>::allocator_type
, ss_typename_param_k P = do_construction<T>
, ss_bool_t R = true
#else /* ? STLSOFT_CF_TEMPLATE_CLASS_DEFAULT_CLASS_ARGUMENT_SUPPORT */
, ss_typename_param_k A
, ss_typename_param_k P
, ss_bool_t R
#endif /* STLSOFT_CF_TEMPLATE_CLASS_DEFAULT_CLASS_ARGUMENT_SUPPORT */
>
// class fixed_array_2d
class fixed_array_2d
: protected A
, public stl_collection_tag
{
public:
typedef fixed_array_2d<T, A, P, R> class_type;
typedef fixed_array_1d<T, A, P, false> dimension_element_type;
typedef /* const */ dimension_element_type const_dimension_element_type;
typedef A allocator_type;
typedef T value_type;
typedef value_type& reference;
typedef value_type const& const_reference;
typedef value_type* pointer;
typedef value_type const* const_pointer;
typedef ss_size_t size_type;
typedef ss_size_t index_type;
typedef ss_ptrdiff_t difference_type;
typedef ss_bool_t bool_type;
typedef
#if !defined(STLSOFT_COMPILER_IS_BORLAND)
ss_typename_type_k
#endif /* compiler */
pointer_iterator < value_type
, pointer
, reference
>::type iterator;
typedef
#if !defined(STLSOFT_COMPILER_IS_BORLAND)
ss_typename_type_k
#endif /* compiler */
pointer_iterator < value_type const
, const_pointer
, const_reference
>::type const_iterator;
#if defined(STLSOFT_LF_BIDIRECTIONAL_ITERATOR_SUPPORT)
typedef reverse_iterator_base < iterator
, value_type
, reference
, pointer
, difference_type
> reverse_iterator;
typedef const_reverse_iterator_base < const_iterator
, value_type const
, const_reference
, const_pointer
, difference_type
> const_reverse_iterator;
#endif /* STLSOFT_LF_BIDIRECTIONAL_ITERATOR_SUPPORT */
// Construction
private:
fixed_array_2d(T *data, index_type d0, index_type d1);
public:
fixed_array_2d(index_type d0, index_type d1);
fixed_array_2d(index_type d0, index_type d1, allocator_type const& ator);
fixed_array_2d(index_type d0, index_type d1, value_type const& t);
fixed_array_2d(index_type d0, index_type d1, value_type const& t, allocator_type const& ator);
fixed_array_2d(class_type const& rhs);
~fixed_array_2d() stlsoft_throw_0();
allocator_type get_allocator() const;
void swap(class_type& rhs) stlsoft_throw_0();
// Access
public:
reference at(index_type i0, index_type i1);
const_reference at(index_type i0, index_type i1) const;
reference at_unchecked(index_type i0, index_type i1);
const_reference at_unchecked(index_type i0, index_type i1) const;
#ifndef STLSOFT_FIXED_ARRAY_NO_FUNCTION_OP
reference operator ()(index_type i0, index_type i1);
const_reference operator ()(index_type i0, index_type i1) const;
#endif /* !STLSOFT_FIXED_ARRAY_NO_FUNCTION_OP */
dimension_element_type at(index_type i0);
const_dimension_element_type at(index_type i0) const;
dimension_element_type at_unchecked(index_type i0);
const_dimension_element_type at_unchecked(index_type i0) const;
dimension_element_type operator [](index_type i0);
const_dimension_element_type operator [](index_type i0) const;
/// A reference to the first element in the array
reference front();
reference back();
const_reference front() const;
const_reference back() const;
// State
public:
index_type dimension0() const;
index_type dimension1() const;
index_type size() const;
bool_type empty() const;
static size_type max_size();
// Iteration
public:
iterator begin();
iterator end();
const_iterator begin() const;
const_iterator end() const;
#if defined(STLSOFT_LF_BIDIRECTIONAL_ITERATOR_SUPPORT)
reverse_iterator rbegin();
reverse_iterator rend();
const_reverse_iterator rbegin() const;
const_reverse_iterator rend() const;
#endif /* STLSOFT_LF_BIDIRECTIONAL_ITERATOR_SUPPORT */
// Access
public:
pointer data();
const_pointer data() const;
// Implementation
private:
pointer allocate_(size_type n);
void deallocate_(pointer p, size_type n);
pointer data_();
index_type calc_index_(index_type i0, index_type i1) const;
void range_check_(index_type i0, index_type i1) const stlsoft_throw_1(stlsoft_ns_qual_std(out_of_range) );
void range_check_(index_type i0) const stlsoft_throw_1(stlsoft_ns_qual_std(out_of_range) );
allocator_type& get_allocator_();
// Members
private:
T* m_data;
index_type m_d0;
index_type m_d1;
size_type m_size;
friend class fixed_array_3d<T, A, P, true>;
friend class fixed_array_3d<T, A, P, false>;
// Not to be implemented
private:
class_type const& operator =(class_type const& rhs);
};
/** \brief 3 dimensional fixed array
*
* \ingroup group__library__containers
*
* \param T The value type
* \param A The allocator type
* \param P The construction policy type
*/
template< ss_typename_param_k T
#ifdef STLSOFT_CF_TEMPLATE_CLASS_DEFAULT_CLASS_ARGUMENT_SUPPORT
, ss_typename_param_k A = ss_typename_type_def_k allocator_selector<T>::allocator_type
, ss_typename_param_k P = do_construction<T>
, ss_bool_t R = true
#else /* ? STLSOFT_CF_TEMPLATE_CLASS_DEFAULT_CLASS_ARGUMENT_SUPPORT */
, ss_typename_param_k A
, ss_typename_param_k P
, ss_bool_t R
#endif /* STLSOFT_CF_TEMPLATE_CLASS_DEFAULT_CLASS_ARGUMENT_SUPPORT */
>
// class fixed_array_3d
class fixed_array_3d
: protected A
, public stl_collection_tag
{
public:
typedef fixed_array_3d<T, A, P, R> class_type;
typedef fixed_array_2d<T, A, P, false> dimension_element_type;
typedef /* const */ dimension_element_type const_dimension_element_type;
typedef A allocator_type;
typedef T value_type;
typedef value_type& reference;
typedef value_type const& const_reference;
typedef value_type* pointer;
typedef value_type const* const_pointer;
typedef ss_size_t size_type;
typedef ss_size_t index_type;
typedef ss_ptrdiff_t difference_type;
typedef ss_bool_t bool_type;
typedef
#if !defined(STLSOFT_COMPILER_IS_BORLAND)
ss_typename_type_k
#endif /* compiler */
pointer_iterator < value_type
, pointer
, reference
>::type iterator;
typedef
#if !defined(STLSOFT_COMPILER_IS_BORLAND)
ss_typename_type_k
#endif /* compiler */
pointer_iterator < value_type const
, const_pointer
, const_reference
>::type const_iterator;
#if defined(STLSOFT_LF_BIDIRECTIONAL_ITERATOR_SUPPORT)
typedef reverse_iterator_base < iterator
, value_type
, reference
, pointer
, difference_type
> reverse_iterator;
typedef const_reverse_iterator_base < const_iterator
, value_type const
, const_reference
, const_pointer
, difference_type
> const_reverse_iterator;
#endif /* STLSOFT_LF_BIDIRECTIONAL_ITERATOR_SUPPORT */
// Construction
private:
fixed_array_3d(pointer data, index_type d0, index_type d1, index_type d2);
public:
fixed_array_3d(index_type d0, index_type d1, index_type d2);
fixed_array_3d(index_type d0, index_type d1, index_type d2, allocator_type const& ator);
fixed_array_3d(index_type d0, index_type d1, index_type d2, value_type const& t);
fixed_array_3d(index_type d0, index_type d1, index_type d2, value_type const& t, allocator_type const& ator);
fixed_array_3d(class_type const& rhs);
~fixed_array_3d() stlsoft_throw_0();
allocator_type get_allocator() const;
void swap(class_type& rhs) stlsoft_throw_0();
// Access
public:
reference at(index_type i0, index_type i1, index_type i2);
const_reference at(index_type i0, index_type i1, index_type i3) const;
reference at_unchecked(index_type i0, index_type i1, index_type i2);
const_reference at_unchecked(index_type i0, index_type i1, index_type i2) const;
#ifndef STLSOFT_FIXED_ARRAY_NO_FUNCTION_OP
reference operator ()(index_type i0, index_type i1, index_type i2);
const_reference operator ()(index_type i0, index_type i1, index_type i2) const;
#endif /* !STLSOFT_FIXED_ARRAY_NO_FUNCTION_OP */
dimension_element_type at(index_type i0);
const_dimension_element_type at(index_type i0) const;
dimension_element_type at_unchecked(index_type i0);
const_dimension_element_type at_unchecked(index_type i0) const;
dimension_element_type operator [](index_type i0);
const_dimension_element_type operator [](index_type i0) const;
reference front();
reference back();
const_reference front() const;
const_reference back() const;
// State
public:
index_type dimension0() const;
index_type dimension1() const;
index_type dimension2() const;
index_type size() const;
bool_type empty() const;
static size_type max_size();
// Iteration
public:
iterator begin();
iterator end();
const_iterator begin() const;
const_iterator end() const;
#if defined(STLSOFT_LF_BIDIRECTIONAL_ITERATOR_SUPPORT)
reverse_iterator rbegin();
reverse_iterator rend();
const_reverse_iterator rbegin() const;
const_reverse_iterator rend() const;
#endif /* STLSOFT_LF_BIDIRECTIONAL_ITERATOR_SUPPORT */
// Access
public:
pointer data();
const_pointer data() const;
// Implementation
private:
pointer allocate_(size_type n);
void deallocate_(pointer p, size_type n);
pointer data_();
index_type calc_index_(index_type i0, index_type i1, index_type i2) const;
void range_check_(index_type i0, index_type i1, index_type i2) const stlsoft_throw_1(stlsoft_ns_qual_std(out_of_range) );
void range_check_(index_type i0) const stlsoft_throw_1(stlsoft_ns_qual_std(out_of_range) );
allocator_type& get_allocator_();
// Members
private:
T* m_data;
index_type m_d0;
index_type m_d1;
index_type m_d2;
friend class fixed_array_4d<T, A, P, true>;
friend class fixed_array_4d<T, A, P, false>;
// Not to be implemented
private:
class_type const& operator =(class_type const& rhs);
};
/** \brief 4 dimensional fixed array
*
* \ingroup group__library__containers
*
* \param T The value type
* \param A The allocator type
* \param P The construction policy type
*/
template< ss_typename_param_k T
#ifdef STLSOFT_CF_TEMPLATE_CLASS_DEFAULT_CLASS_ARGUMENT_SUPPORT
, ss_typename_param_k A = ss_typename_type_def_k allocator_selector<T>::allocator_type
, ss_typename_param_k P = do_construction<T>
, ss_bool_t R = true
#else /* ? STLSOFT_CF_TEMPLATE_CLASS_DEFAULT_CLASS_ARGUMENT_SUPPORT */
, ss_typename_param_k A
, ss_typename_param_k P
, ss_bool_t R
#endif /* STLSOFT_CF_TEMPLATE_CLASS_DEFAULT_CLASS_ARGUMENT_SUPPORT */
>
// class fixed_array_4d
class fixed_array_4d
: protected A
, public stl_collection_tag
{
public:
typedef fixed_array_4d<T, A, P, R> class_type;
typedef fixed_array_3d<T, A, P, false> dimension_element_type;
typedef /* const */ dimension_element_type const_dimension_element_type;
typedef A allocator_type;
typedef T value_type;
typedef value_type& reference;
typedef value_type const& const_reference;
typedef value_type* pointer;
typedef value_type const* const_pointer;
typedef ss_size_t size_type;
typedef ss_size_t index_type;
typedef ss_ptrdiff_t difference_type;
typedef ss_bool_t bool_type;
typedef
#if !defined(STLSOFT_COMPILER_IS_BORLAND)
ss_typename_type_k
#endif /* compiler */
pointer_iterator < value_type
, pointer
, reference
>::type iterator;
typedef
#if !defined(STLSOFT_COMPILER_IS_BORLAND)
ss_typename_type_k
#endif /* compiler */
pointer_iterator < value_type const
, const_pointer
, const_reference
>::type const_iterator;
#if defined(STLSOFT_LF_BIDIRECTIONAL_ITERATOR_SUPPORT)
typedef reverse_iterator_base < iterator
, value_type
, reference
, pointer
, difference_type
> reverse_iterator;
typedef const_reverse_iterator_base < const_iterator
, value_type const
, const_reference
, const_pointer
, difference_type
> const_reverse_iterator;
#endif /* STLSOFT_LF_BIDIRECTIONAL_ITERATOR_SUPPORT */
// Construction
private:
fixed_array_4d(T *data, index_type d0, index_type d1, index_type d2, index_type d3);
public:
fixed_array_4d(index_type d0, index_type d1, index_type d2, index_type d3);
fixed_array_4d(index_type d0, index_type d1, index_type d2, index_type d3, allocator_type const& ator);
fixed_array_4d(index_type d0, index_type d1, index_type d2, index_type d3, value_type const& t);
fixed_array_4d(index_type d0, index_type d1, index_type d2, index_type d3, value_type const& t, allocator_type const& ator);
fixed_array_4d(class_type const& rhs);
~fixed_array_4d() stlsoft_throw_0();
allocator_type get_allocator() const;
void swap(class_type& rhs) stlsoft_throw_0();
// Access
public:
reference at(index_type i0, index_type i1, index_type i2, index_type i3);
const_reference at(index_type i0, index_type i1, index_type i2, index_type i3) const;
reference at_unchecked(index_type i0, index_type i1, index_type i2, index_type i3);
const_reference at_unchecked(index_type i0, index_type i1, index_type i2, index_type i3) const;
#ifndef STLSOFT_FIXED_ARRAY_NO_FUNCTION_OP
reference operator ()(index_type i0, index_type i1, index_type i2, index_type i3);
const_reference operator ()(index_type i0, index_type i1, index_type i2, index_type i3) const;
#endif /* !STLSOFT_FIXED_ARRAY_NO_FUNCTION_OP */
dimension_element_type at(index_type i0);
const_dimension_element_type at(index_type i0) const;
dimension_element_type at_unchecked(index_type i0);
const_dimension_element_type at_unchecked(index_type i0) const;
dimension_element_type operator [](index_type i0);
const_dimension_element_type operator [](index_type i0) const;
reference front();
reference back();
const_reference front() const;
const_reference back() const;
// State
public:
index_type dimension0() const;
index_type dimension1() const;
index_type dimension2() const;
index_type dimension3() const;
index_type size() const;
bool_type empty() const;
static size_type max_size();
// Iteration
public:
iterator begin();
iterator end();
const_iterator begin() const;
const_iterator end() const;
#if defined(STLSOFT_LF_BIDIRECTIONAL_ITERATOR_SUPPORT)
reverse_iterator rbegin();
reverse_iterator rend();
const_reverse_iterator rbegin() const;
const_reverse_iterator rend() const;
#endif /* STLSOFT_LF_BIDIRECTIONAL_ITERATOR_SUPPORT */
// Access
public:
pointer data();
const_pointer data() const;
// Implementation
private:
pointer allocate_(size_type n);
void deallocate_(pointer p, size_type n);
pointer data_();
index_type calc_index_(index_type i0, index_type i1, index_type i2, index_type i3) const;
void range_check_(index_type i0, index_type i1, index_type i2, index_type i3) const stlsoft_throw_1(stlsoft_ns_qual_std(out_of_range) );
void range_check_(index_type i0) const stlsoft_throw_1(stlsoft_ns_qual_std(out_of_range) );
allocator_type& get_allocator_();
// Members
private:
T* m_data;
index_type m_d0;
index_type m_d1;
index_type m_d2;
index_type m_d3;
friend class fixed_array_5d<T, A, P, true>;
friend class fixed_array_5d<T, A, P, false>;
// Not to be implemented
private:
class_type const& operator =(class_type const& rhs);
};
////////////////////////////////////////////////////////////////////////////
// Unit-testing
#ifdef STLSOFT_UNITTEST
# include "./unittest/fixed_array_unittest_.h"
#endif /* STLSOFT_UNITTEST */
/* /////////////////////////////////////////////////////////////////////////
* Implementation
*/
#ifndef STLSOFT_DOCUMENTATION_SKIP_SECTION
// fixed_array_1d
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline ss_typename_type_ret_k fixed_array_1d<T, A, P, R>::pointer fixed_array_1d<T, A, P, R>::allocate_(ss_typename_type_k fixed_array_1d<T, A, P, R>::size_type n)
{
allocator_type &ator = *this;
return ator.allocate(n, NULL);
}
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline void fixed_array_1d<T, A, P, R>::deallocate_(ss_typename_type_k fixed_array_1d<T, A, P, R>::pointer p, ss_typename_type_k fixed_array_1d<T, A, P, R>::size_type n)
{
allocator_type &ator = *this;
ator.deallocate(p, n);
}
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline ss_typename_type_ret_k fixed_array_1d<T, A, P, R>::pointer fixed_array_1d<T, A, P, R>::data_()
{
return m_data;
}
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline ss_typename_type_ret_k fixed_array_1d<T, A, P, R>::index_type fixed_array_1d<T, A, P, R>::calc_index_(ss_typename_type_k fixed_array_1d<T, A, P, R>::index_type i0) const
{
return i0;
}
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline void fixed_array_1d<T, A, P, R>::range_check_(ss_typename_type_k fixed_array_1d<T, A, P, R>::index_type i0) const stlsoft_throw_1(stlsoft_ns_qual_std(out_of_range) )
{
#ifdef STLSOFT_CF_EXCEPTION_SUPPORT
if(!(i0 < m_d0))
{
STLSOFT_THROW_X(stlsoft_ns_qual_std(out_of_range)("fixed array index out of range"));
}
#else
STLSOFT_MESSAGE_ASSERT("fixed array index out of range", i0 < m_d0);
#endif /* STLSOFT_CF_EXCEPTION_SUPPORT */
}
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline ss_typename_type_k fixed_array_1d<T, A, P, R>::allocator_type& fixed_array_1d<T, A, P, R>::get_allocator_()
{
return *this;
}
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline fixed_array_1d<T, A, P, R>::fixed_array_1d(T* src, ss_typename_type_k fixed_array_1d<T, A, P, R>::index_type d0)
: m_data(src)
, m_d0(d0)
{
STLSOFT_STATIC_ASSERT(!R);
}
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline fixed_array_1d<T, A, P, R>::fixed_array_1d(ss_typename_type_k fixed_array_1d<T, A, P, R>::index_type d0)
: m_data(allocate_(d0))
, m_d0(d0)
{
STLSOFT_STATIC_ASSERT(R);
array_range_initialiser<T, A, P>::construct(*this, data_(), size());
}
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline fixed_array_1d<T, A, P, R>::fixed_array_1d(ss_typename_type_k fixed_array_1d<T, A, P, R>::index_type d0, ss_typename_type_k fixed_array_1d<T, A, P, R>::allocator_type const& ator)
: allocator_type(ator)
, m_data(allocate_(d0))
, m_d0(d0)
{
STLSOFT_STATIC_ASSERT(R);
array_range_initialiser<T, A, P>::construct(*this, data_(), size());
}
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline fixed_array_1d<T, A, P, R>::fixed_array_1d(ss_typename_type_k fixed_array_1d<T, A, P, R>::index_type d0, value_type const& t)
: m_data(allocate_(d0))
, m_d0(d0)
{
STLSOFT_STATIC_ASSERT(R);
array_range_initialiser<T, A, P>::construct(*this, data_(), size(), t);
}
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline fixed_array_1d<T, A, P, R>::fixed_array_1d(ss_typename_type_k fixed_array_1d<T, A, P, R>::index_type d0, value_type const& t, ss_typename_type_k fixed_array_1d<T, A, P, R>::allocator_type const& ator)
: allocator_type(ator)
, m_data(allocate_(d0))
, m_d0(d0)
{
STLSOFT_STATIC_ASSERT(R);
array_range_initialiser<T, A, P>::construct(*this, data_(), size(), t);
}
#ifdef STLSOFT_MULTIDIM_ARRAY_FEATURE_REQUIRES_COPY_CTOR_WITH_RVO
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline fixed_array_1d<T, A, P, R>::fixed_array_1d(fixed_array_1d<T, A, P, R> const& rhs)
: m_data(R ? allocate_(rhs.dimension0()) : rhs.m_data)
, m_d0(rhs.dimension0())
{
if(R)
{
array_range_initialiser<T, A, P>::copy_construct(*this, data_(), rhs.data(), size());
}
}
#else /* ? STLSOFT_MULTIDIM_ARRAY_FEATURE_REQUIRES_COPY_CTOR_WITH_RVO */
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline fixed_array_1d<T, A, P, R>::fixed_array_1d(fixed_array_1d<T, A, P, R> const& rhs)
: m_data(allocate_(rhs.dimension0()))
, m_d0(rhs.dimension0())
{
STLSOFT_STATIC_ASSERT(R);
array_range_initialiser<T, A, P>::copy_construct(*this, data_(), rhs.data(), size());
}
#endif /* STLSOFT_MULTIDIM_ARRAY_FEATURE_REQUIRES_COPY_CTOR_WITH_RVO */
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline fixed_array_1d<T, A, P, R>::~fixed_array_1d() stlsoft_throw_0()
{
if(R)
{
array_range_initialiser<T, A, P>::destroy(*this, data_(), size());
deallocate_(m_data, size());
}
}
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline ss_typename_type_k fixed_array_1d<T, A, P, R>::allocator_type fixed_array_1d<T, A, P, R>::get_allocator() const
{
return *this;
}
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline void fixed_array_1d<T, A, P, R>::swap(ss_typename_type_k fixed_array_1d<T, A, P, R>::class_type& rhs) stlsoft_throw_0()
{
// We don't need to do any construct and swap here, because all the
// variables that are being swapped are simple types (integers and
// pointers).
std_swap(get_allocator_(), rhs.get_allocator_());
std_swap(m_data, rhs.m_data);
std_swap(m_d0, rhs.m_d0);
}
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline ss_typename_type_ret_k fixed_array_1d<T, A, P, R>::reference fixed_array_1d<T, A, P, R>::at(ss_typename_type_k fixed_array_1d<T, A, P, R>::index_type i0)
{
range_check_(i0);
return m_data[i0];
}
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline ss_typename_type_ret_k fixed_array_1d<T, A, P, R>::const_reference fixed_array_1d<T, A, P, R>::at(ss_typename_type_k fixed_array_1d<T, A, P, R>::index_type i0) const
{
range_check_(i0);
return m_data[i0];
}
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline ss_typename_type_ret_k fixed_array_1d<T, A, P, R>::reference fixed_array_1d<T, A, P, R>::at_unchecked(ss_typename_type_k fixed_array_1d<T, A, P, R>::index_type i0)
{
STLSOFT_MESSAGE_ASSERT("fixed array index out of range", i0 < m_d0);
return m_data[i0];
}
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline ss_typename_type_ret_k fixed_array_1d<T, A, P, R>::const_reference fixed_array_1d<T, A, P, R>::at_unchecked(ss_typename_type_k fixed_array_1d<T, A, P, R>::index_type i0) const
{
STLSOFT_MESSAGE_ASSERT("fixed array index out of range", i0 < m_d0);
return m_data[i0];
}
#ifndef STLSOFT_FIXED_ARRAY_NO_FUNCTION_OP
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline ss_typename_type_ret_k fixed_array_1d<T, A, P, R>::reference fixed_array_1d<T, A, P, R>::operator ()(ss_typename_type_k fixed_array_1d<T, A, P, R>::index_type i0)
{
return at_unchecked(i0);
}
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline ss_typename_type_ret_k fixed_array_1d<T, A, P, R>::const_reference fixed_array_1d<T, A, P, R>::operator ()(ss_typename_type_k fixed_array_1d<T, A, P, R>::index_type i0) const
{
return at_unchecked(i0);
}
#endif /* !STLSOFT_FIXED_ARRAY_NO_FUNCTION_OP */
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline ss_typename_type_ret_k fixed_array_1d<T, A, P, R>::reference fixed_array_1d<T, A, P, R>::operator [](ss_typename_type_k fixed_array_1d<T, A, P, R>::index_type i0)
{
return at_unchecked(i0);
}
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline ss_typename_type_ret_k fixed_array_1d<T, A, P, R>::const_reference fixed_array_1d<T, A, P, R>::operator [](ss_typename_type_k fixed_array_1d<T, A, P, R>::index_type i0) const
{
return at_unchecked(i0);
}
#if 0
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline ss_typename_type_ret_k fixed_array_1d<T, A, P, R>::pointer fixed_array_1d<T, A, P, R>::operator &()
{
return &m_data[0];
}
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline ss_typename_type_ret_k fixed_array_1d<T, A, P, R>::const_pointer fixed_array_1d<T, A, P, R>::operator &() const
{
return &m_data[0];
}
#endif /* 0 */
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline ss_typename_type_ret_k fixed_array_1d<T, A, P, R>::reference fixed_array_1d<T, A, P, R>::front()
{
return at(0);
}
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline ss_typename_type_ret_k fixed_array_1d<T, A, P, R>::reference fixed_array_1d<T, A, P, R>::back()
{
return at(m_d0 - 1);
}
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline ss_typename_type_ret_k fixed_array_1d<T, A, P, R>::const_reference fixed_array_1d<T, A, P, R>::front() const
{
return at(0);
}
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline ss_typename_type_ret_k fixed_array_1d<T, A, P, R>::const_reference fixed_array_1d<T, A, P, R>::back() const
{
return at(m_d0 - 1);
}
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline ss_typename_type_ret_k fixed_array_1d<T, A, P, R>::index_type fixed_array_1d<T, A, P, R>::dimension0() const
{
return m_d0;
}
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline ss_typename_type_ret_k fixed_array_1d<T, A, P, R>::index_type fixed_array_1d<T, A, P, R>::size() const
{
return m_d0;
}
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline ss_typename_type_ret_k fixed_array_1d<T, A, P, R>::bool_type fixed_array_1d<T, A, P, R>::empty() const
{
return 0 == size();
}
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline /* static */ ss_typename_type_ret_k fixed_array_1d<T, A, P, R>::size_type fixed_array_1d<T, A, P, R>::max_size()
{
return static_cast<size_type>(-1) / sizeof(T);
}
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline ss_typename_type_ret_k fixed_array_1d<T, A, P, R>::iterator fixed_array_1d<T, A, P, R>::begin()
{
return m_data;
}
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline ss_typename_type_ret_k fixed_array_1d<T, A, P, R>::iterator fixed_array_1d<T, A, P, R>::end()
{
return m_data + size();
}
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline ss_typename_type_ret_k fixed_array_1d<T, A, P, R>::const_iterator fixed_array_1d<T, A, P, R>::begin() const
{
return m_data;
}
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline ss_typename_type_ret_k fixed_array_1d<T, A, P, R>::const_iterator fixed_array_1d<T, A, P, R>::end() const
{
return m_data + size();
}
#if defined(STLSOFT_LF_BIDIRECTIONAL_ITERATOR_SUPPORT)
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline ss_typename_type_ret_k fixed_array_1d<T, A, P, R>::reverse_iterator fixed_array_1d<T, A, P, R>::rbegin()
{
return reverse_iterator(end());
}
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline ss_typename_type_ret_k fixed_array_1d<T, A, P, R>::reverse_iterator fixed_array_1d<T, A, P, R>::rend()
{
return reverse_iterator(begin());
}
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline ss_typename_type_ret_k fixed_array_1d<T, A, P, R>::const_reverse_iterator fixed_array_1d<T, A, P, R>::rbegin() const
{
return const_reverse_iterator(end());
}
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline ss_typename_type_ret_k fixed_array_1d<T, A, P, R>::const_reverse_iterator fixed_array_1d<T, A, P, R>::rend() const
{
return const_reverse_iterator(begin());
}
#endif /* STLSOFT_LF_BIDIRECTIONAL_ITERATOR_SUPPORT */
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline ss_typename_type_ret_k fixed_array_1d<T, A, P, R>::pointer fixed_array_1d<T, A, P, R>::data()
{
return m_data;
}
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline ss_typename_type_ret_k fixed_array_1d<T, A, P, R>::const_pointer fixed_array_1d<T, A, P, R>::data() const
{
return m_data;
}
// fixed_array_2d
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline ss_typename_type_ret_k fixed_array_2d<T, A, P, R>::pointer fixed_array_2d<T, A, P, R>::allocate_(ss_typename_type_k fixed_array_2d<T, A, P, R>::size_type n)
{
allocator_type &ator = *this;
return ator.allocate(n, NULL);
}
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline void fixed_array_2d<T, A, P, R>::deallocate_(ss_typename_type_k fixed_array_2d<T, A, P, R>::pointer p, ss_typename_type_k fixed_array_2d<T, A, P, R>::size_type n)
{
allocator_type &ator = *this;
ator.deallocate(p, n);
}
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline ss_typename_type_ret_k fixed_array_2d<T, A, P, R>::pointer fixed_array_2d<T, A, P, R>::data_()
{
return m_data;
}
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline ss_typename_type_ret_k fixed_array_2d<T, A, P, R>::index_type fixed_array_2d<T, A, P, R>::calc_index_(ss_typename_type_k fixed_array_2d<T, A, P, R>::index_type i0, ss_typename_type_k fixed_array_2d<T, A, P, R>::index_type i1) const
{
return (i0 * m_d1) + i1;
}
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline void fixed_array_2d<T, A, P, R>::range_check_(ss_typename_type_k fixed_array_2d<T, A, P, R>::index_type i0, ss_typename_type_k fixed_array_2d<T, A, P, R>::index_type i1) const stlsoft_throw_1(stlsoft_ns_qual_std(out_of_range) )
{
#ifdef STLSOFT_CF_EXCEPTION_SUPPORT
if( !(i0 < m_d0) ||
!(i1 < m_d1))
{
STLSOFT_THROW_X(stlsoft_ns_qual_std(out_of_range)("fixed array index out of range"));
}
#else
STLSOFT_MESSAGE_ASSERT("fixed array index out of range", (i0 < m_d0 && i1 < m_d1));
#endif /* STLSOFT_CF_EXCEPTION_SUPPORT */
}
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline ss_typename_type_k fixed_array_2d<T, A, P, R>::allocator_type& fixed_array_2d<T, A, P, R>::get_allocator_()
{
return *this;
}
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline void fixed_array_2d<T, A, P, R>::range_check_(ss_typename_type_k fixed_array_2d<T, A, P, R>::index_type i0) const stlsoft_throw_1(stlsoft_ns_qual_std(out_of_range) )
{
#ifdef STLSOFT_CF_EXCEPTION_SUPPORT
if(!(i0 < m_d0))
{
STLSOFT_THROW_X(stlsoft_ns_qual_std(out_of_range)("fixed array index out of range"));
}
#else
STLSOFT_MESSAGE_ASSERT("fixed array index out of range", i0 < m_d0);
#endif /* STLSOFT_CF_EXCEPTION_SUPPORT */
}
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline fixed_array_2d<T, A, P, R>::fixed_array_2d(T* src, ss_typename_type_k fixed_array_2d<T, A, P, R>::index_type d0, ss_typename_type_k fixed_array_2d<T, A, P, R>::index_type d1)
: m_data(src)
, m_d0(d0)
, m_d1(d1)
, m_size(d0 * d1)
{
STLSOFT_STATIC_ASSERT(!R);
}
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline fixed_array_2d<T, A, P, R>::fixed_array_2d(ss_typename_type_k fixed_array_2d<T, A, P, R>::index_type d0, ss_typename_type_k fixed_array_2d<T, A, P, R>::index_type d1)
: m_data(allocate_(d0 * d1))
, m_d0(d0)
, m_d1(d1)
, m_size(d0 * d1)
{
STLSOFT_STATIC_ASSERT(R);
array_range_initialiser<T, A, P>::construct(*this, data_(), size());
}
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline fixed_array_2d<T, A, P, R>::fixed_array_2d(ss_typename_type_k fixed_array_2d<T, A, P, R>::index_type d0, ss_typename_type_k fixed_array_2d<T, A, P, R>::index_type d1, ss_typename_type_k fixed_array_2d<T, A, P, R>::allocator_type const& ator)
: allocator_type(ator)
, m_data(allocate_(d0 * d1))
, m_d0(d0)
, m_d1(d1)
, m_size(d0 * d1)
{
STLSOFT_STATIC_ASSERT(R);
array_range_initialiser<T, A, P>::construct(*this, data_(), size());
}
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline fixed_array_2d<T, A, P, R>::fixed_array_2d(ss_typename_type_k fixed_array_2d<T, A, P, R>::index_type d0, ss_typename_type_k fixed_array_2d<T, A, P, R>::index_type d1, value_type const& t)
: m_data(allocate_(d0 * d1))
, m_d0(d0)
, m_d1(d1)
, m_size(d0 * d1)
{
STLSOFT_STATIC_ASSERT(R);
array_range_initialiser<T, A, P>::construct(*this, data_(), size(), t);
}
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline fixed_array_2d<T, A, P, R>::fixed_array_2d(ss_typename_type_k fixed_array_2d<T, A, P, R>::index_type d0, ss_typename_type_k fixed_array_2d<T, A, P, R>::index_type d1, value_type const& t, ss_typename_type_k fixed_array_2d<T, A, P, R>::allocator_type const& ator)
: allocator_type(ator)
, m_data(allocate_(d0 * d1))
, m_d0(d0)
, m_d1(d1)
, m_size(d0 * d1)
{
STLSOFT_STATIC_ASSERT(R);
array_range_initialiser<T, A, P>::construct(*this, data_(), size(), t);
}
#ifdef STLSOFT_MULTIDIM_ARRAY_FEATURE_REQUIRES_COPY_CTOR_WITH_RVO
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline fixed_array_2d<T, A, P, R>::fixed_array_2d(fixed_array_2d<T, A, P, R> const& rhs)
: m_data(R ? allocate_(rhs.dimension0() * rhs.dimension1()) : rhs.m_data)
, m_d0(rhs.dimension0())
, m_d1(rhs.dimension1())
, m_size(rhs.dimension0() * rhs.dimension1())
{
if(R)
{
array_range_initialiser<T, A, P>::copy_construct(*this, data_(), rhs.data(), size());
}
}
#else /* ? STLSOFT_MULTIDIM_ARRAY_FEATURE_REQUIRES_COPY_CTOR_WITH_RVO */
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline fixed_array_2d<T, A, P, R>::fixed_array_2d(fixed_array_2d<T, A, P, R> const& rhs)
: m_data(allocate_(rhs.dimension0() * rhs.dimension1()))
, m_d0(rhs.dimension0())
, m_d1(rhs.dimension1())
, m_size(rhs.dimension0() * rhs.dimension1())
{
STLSOFT_STATIC_ASSERT(R);
array_range_initialiser<T, A, P>::copy_construct(*this, data_(), rhs.data(), size());
}
#endif /* STLSOFT_MULTIDIM_ARRAY_FEATURE_REQUIRES_COPY_CTOR_WITH_RVO */
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline fixed_array_2d<T, A, P, R>::~fixed_array_2d() stlsoft_throw_0()
{
if(R)
{
array_range_initialiser<T, A, P>::destroy(*this, data_(), size());
deallocate_(m_data, size());
}
}
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline ss_typename_type_k fixed_array_2d<T, A, P, R>::allocator_type fixed_array_2d<T, A, P, R>::get_allocator() const
{
return *this;
}
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline void fixed_array_2d<T, A, P, R>::swap(ss_typename_type_k fixed_array_2d<T, A, P, R>::class_type& rhs) stlsoft_throw_0()
{
// We don't need to do any construct and swap here, because all the
// variables that are being swapped are simple types (integers and
// pointers).
std_swap(get_allocator_(), rhs.get_allocator_());
std_swap(m_data, rhs.m_data);
std_swap(m_d0, rhs.m_d0);
std_swap(m_d1, rhs.m_d1);
std_swap(m_size, rhs.m_size);
}
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline ss_typename_type_ret_k fixed_array_2d<T, A, P, R>::reference fixed_array_2d<T, A, P, R>::at(ss_typename_type_k fixed_array_2d<T, A, P, R>::index_type i0, ss_typename_type_k fixed_array_2d<T, A, P, R>::index_type i1)
{
range_check_(i0, i1);
return *(m_data + calc_index_(i0, i1));
}
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline ss_typename_type_ret_k fixed_array_2d<T, A, P, R>::const_reference fixed_array_2d<T, A, P, R>::at(ss_typename_type_k fixed_array_2d<T, A, P, R>::index_type i0, ss_typename_type_k fixed_array_2d<T, A, P, R>::index_type i1) const
{
range_check_(i0, i1);
return *(m_data + calc_index_(i0, i1));
}
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline ss_typename_type_ret_k fixed_array_2d<T, A, P, R>::reference fixed_array_2d<T, A, P, R>::at_unchecked(ss_typename_type_k fixed_array_2d<T, A, P, R>::index_type i0, ss_typename_type_k fixed_array_2d<T, A, P, R>::index_type i1)
{
STLSOFT_MESSAGE_ASSERT("fixed array index out of range", (i0 < m_d0 && i1 < m_d1));
return *(m_data + calc_index_(i0, i1));
}
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline ss_typename_type_ret_k fixed_array_2d<T, A, P, R>::const_reference fixed_array_2d<T, A, P, R>::at_unchecked(ss_typename_type_k fixed_array_2d<T, A, P, R>::index_type i0, ss_typename_type_k fixed_array_2d<T, A, P, R>::index_type i1) const
{
STLSOFT_MESSAGE_ASSERT("fixed array index out of range", (i0 < m_d0 && i1 < m_d1));
return *(m_data + calc_index_(i0, i1));
}
#ifndef STLSOFT_FIXED_ARRAY_NO_FUNCTION_OP
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline ss_typename_type_ret_k fixed_array_2d<T, A, P, R>::reference fixed_array_2d<T, A, P, R>::operator ()(ss_typename_type_k fixed_array_2d<T, A, P, R>::index_type i0, ss_typename_type_k fixed_array_2d<T, A, P, R>::index_type i1)
{
return at_unchecked(i0, i1);
}
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline ss_typename_type_ret_k fixed_array_2d<T, A, P, R>::const_reference fixed_array_2d<T, A, P, R>::operator ()(ss_typename_type_k fixed_array_2d<T, A, P, R>::index_type i0, ss_typename_type_k fixed_array_2d<T, A, P, R>::index_type i1) const
{
return at_unchecked(i0, i1);
}
#endif /* !STLSOFT_FIXED_ARRAY_NO_FUNCTION_OP */
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline ss_typename_type_ret_k fixed_array_2d<T, A, P, R>::dimension_element_type fixed_array_2d<T, A, P, R>::at(ss_typename_type_k fixed_array_2d<T, A, P, R>::index_type i0)
{
range_check_(i0);
return dimension_element_type(m_data + i0 * m_d1, m_d1);
}
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline ss_typename_type_ret_k fixed_array_2d<T, A, P, R>::const_dimension_element_type fixed_array_2d<T, A, P, R>::at(ss_typename_type_k fixed_array_2d<T, A, P, R>::index_type i0) const
{
range_check_(i0);
return dimension_element_type(m_data + i0 * m_d1, m_d1);
}
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline ss_typename_type_ret_k fixed_array_2d<T, A, P, R>::dimension_element_type fixed_array_2d<T, A, P, R>::at_unchecked(ss_typename_type_k fixed_array_2d<T, A, P, R>::index_type i0)
{
STLSOFT_MESSAGE_ASSERT("fixed array index out of range", i0 < m_d0);
return dimension_element_type(m_data + i0 * m_d1, m_d1);
}
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline ss_typename_type_ret_k fixed_array_2d<T, A, P, R>::const_dimension_element_type fixed_array_2d<T, A, P, R>::at_unchecked(ss_typename_type_k fixed_array_2d<T, A, P, R>::index_type i0) const
{
STLSOFT_MESSAGE_ASSERT("fixed array index out of range", i0 < m_d0);
return dimension_element_type(m_data + i0 * m_d1, m_d1);
}
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline ss_typename_type_ret_k fixed_array_2d<T, A, P, R>::dimension_element_type fixed_array_2d<T, A, P, R>::operator [](ss_typename_type_k fixed_array_2d<T, A, P, R>::index_type i0)
{
STLSOFT_MESSAGE_ASSERT("fixed array index out of range", i0 < m_d0);
return dimension_element_type(m_data + i0 * m_d1, m_d1);
}
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline ss_typename_type_ret_k fixed_array_2d<T, A, P, R>::const_dimension_element_type fixed_array_2d<T, A, P, R>::operator [](ss_typename_type_k fixed_array_2d<T, A, P, R>::index_type i0) const
{
STLSOFT_MESSAGE_ASSERT("fixed array index out of range", i0 < m_d0);
return dimension_element_type(m_data + i0 * m_d1, m_d1);
}
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline ss_typename_type_ret_k fixed_array_2d<T, A, P, R>::reference fixed_array_2d<T, A, P, R>::front()
{
return at(0, 0);
}
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline ss_typename_type_ret_k fixed_array_2d<T, A, P, R>::reference fixed_array_2d<T, A, P, R>::back()
{
return at(m_d0 - 1, m_d1 - 1);
}
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline ss_typename_type_ret_k fixed_array_2d<T, A, P, R>::const_reference fixed_array_2d<T, A, P, R>::front() const
{
return at(0, 0);
}
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline ss_typename_type_ret_k fixed_array_2d<T, A, P, R>::const_reference fixed_array_2d<T, A, P, R>::back() const
{
return at(m_d0 - 1, m_d1 - 1);
}
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline ss_typename_type_ret_k fixed_array_2d<T, A, P, R>::index_type fixed_array_2d<T, A, P, R>::dimension0() const
{
return m_d0;
}
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline ss_typename_type_ret_k fixed_array_2d<T, A, P, R>::index_type fixed_array_2d<T, A, P, R>::dimension1() const
{
return m_d1;
}
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline ss_typename_type_ret_k fixed_array_2d<T, A, P, R>::index_type fixed_array_2d<T, A, P, R>::size() const
{
STLSOFT_ASSERT(m_size == m_d0 * m_d1);
return m_size;
}
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline ss_typename_type_ret_k fixed_array_2d<T, A, P, R>::bool_type fixed_array_2d<T, A, P, R>::empty() const
{
return 0 == size();
}
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline /* static */ ss_typename_type_ret_k fixed_array_2d<T, A, P, R>::size_type fixed_array_2d<T, A, P, R>::max_size()
{
return static_cast<size_type>(-1) / sizeof(T);
}
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline ss_typename_type_ret_k fixed_array_2d<T, A, P, R>::iterator fixed_array_2d<T, A, P, R>::begin()
{
return m_data;
}
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline ss_typename_type_ret_k fixed_array_2d<T, A, P, R>::iterator fixed_array_2d<T, A, P, R>::end()
{
return m_data + size();
}
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline ss_typename_type_ret_k fixed_array_2d<T, A, P, R>::const_iterator fixed_array_2d<T, A, P, R>::begin() const
{
return m_data;
}
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline ss_typename_type_ret_k fixed_array_2d<T, A, P, R>::const_iterator fixed_array_2d<T, A, P, R>::end() const
{
return m_data + size();
}
#if defined(STLSOFT_LF_BIDIRECTIONAL_ITERATOR_SUPPORT)
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline ss_typename_type_ret_k fixed_array_2d<T, A, P, R>::reverse_iterator fixed_array_2d<T, A, P, R>::rbegin()
{
return reverse_iterator(end());
}
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline ss_typename_type_ret_k fixed_array_2d<T, A, P, R>::reverse_iterator fixed_array_2d<T, A, P, R>::rend()
{
return reverse_iterator(begin());
}
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline ss_typename_type_ret_k fixed_array_2d<T, A, P, R>::const_reverse_iterator fixed_array_2d<T, A, P, R>::rbegin() const
{
return const_reverse_iterator(end());
}
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline ss_typename_type_ret_k fixed_array_2d<T, A, P, R>::const_reverse_iterator fixed_array_2d<T, A, P, R>::rend() const
{
return const_reverse_iterator(begin());
}
#endif /* STLSOFT_LF_BIDIRECTIONAL_ITERATOR_SUPPORT */
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline ss_typename_type_ret_k fixed_array_2d<T, A, P, R>::pointer fixed_array_2d<T, A, P, R>::data()
{
return m_data;
}
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline ss_typename_type_ret_k fixed_array_2d<T, A, P, R>::const_pointer fixed_array_2d<T, A, P, R>::data() const
{
return m_data;
}
// fixed_array_3d
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline ss_typename_type_ret_k fixed_array_3d<T, A, P, R>::pointer fixed_array_3d<T, A, P, R>::allocate_(ss_typename_type_k fixed_array_3d<T, A, P, R>::size_type n)
{
allocator_type &ator = *this;
return ator.allocate(n, NULL);
}
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline void fixed_array_3d<T, A, P, R>::deallocate_(ss_typename_type_k fixed_array_3d<T, A, P, R>::pointer p, ss_typename_type_k fixed_array_3d<T, A, P, R>::size_type n)
{
allocator_type &ator = *this;
ator.deallocate(p, n);
}
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline ss_typename_type_ret_k fixed_array_3d<T, A, P, R>::pointer fixed_array_3d<T, A, P, R>::data_()
{
return m_data;
}
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline ss_typename_type_ret_k fixed_array_3d<T, A, P, R>::index_type fixed_array_3d<T, A, P, R>::calc_index_(ss_typename_type_k fixed_array_3d<T, A, P, R>::index_type i0, ss_typename_type_k fixed_array_3d<T, A, P, R>::index_type i1, ss_typename_type_k fixed_array_3d<T, A, P, R>::index_type i2) const
{
return ((i0 * m_d1) + i1) * m_d2 + i2;
}
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline void fixed_array_3d<T, A, P, R>::range_check_(ss_typename_type_k fixed_array_3d<T, A, P, R>::index_type i0, ss_typename_type_k fixed_array_3d<T, A, P, R>::index_type i1, ss_typename_type_k fixed_array_3d<T, A, P, R>::index_type i2) const stlsoft_throw_1(stlsoft_ns_qual_std(out_of_range) )
{
#ifdef STLSOFT_CF_EXCEPTION_SUPPORT
if( !(i0 < m_d0) ||
!(i1 < m_d1) ||
!(i2 < m_d2))
{
STLSOFT_THROW_X(stlsoft_ns_qual_std(out_of_range)("fixed array index out of range"));
}
#else
STLSOFT_MESSAGE_ASSERT("fixed array index out of range", (i0 < m_d0 && i1 < m_d1 && i2 < m_d2));
#endif /* STLSOFT_CF_EXCEPTION_SUPPORT */
}
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline ss_typename_type_k fixed_array_3d<T, A, P, R>::allocator_type& fixed_array_3d<T, A, P, R>::get_allocator_()
{
return *this;
}
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline void fixed_array_3d<T, A, P, R>::range_check_(ss_typename_type_k fixed_array_3d<T, A, P, R>::index_type i0) const stlsoft_throw_1(stlsoft_ns_qual_std(out_of_range) )
{
#ifdef STLSOFT_CF_EXCEPTION_SUPPORT
if(!(i0 < m_d0))
{
STLSOFT_THROW_X(stlsoft_ns_qual_std(out_of_range)("fixed array index out of range"));
}
#else
STLSOFT_MESSAGE_ASSERT("fixed array index out of range", i0 < m_d0);
#endif /* STLSOFT_CF_EXCEPTION_SUPPORT */
}
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline fixed_array_3d<T, A, P, R>::fixed_array_3d(ss_typename_type_k fixed_array_3d<T, A, P, R>::pointer src, ss_typename_type_k fixed_array_3d<T, A, P, R>::index_type d0, ss_typename_type_k fixed_array_3d<T, A, P, R>::index_type d1, ss_typename_type_k fixed_array_3d<T, A, P, R>::index_type d2)
: m_data(src)
, m_d0(d0)
, m_d1(d1)
, m_d2(d2)
{
STLSOFT_STATIC_ASSERT(!R);
}
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline fixed_array_3d<T, A, P, R>::fixed_array_3d(ss_typename_type_k fixed_array_3d<T, A, P, R>::index_type d0, ss_typename_type_k fixed_array_3d<T, A, P, R>::index_type d1, ss_typename_type_k fixed_array_3d<T, A, P, R>::index_type d2)
: m_data(allocate_(d0 * d1 * d2))
, m_d0(d0)
, m_d1(d1)
, m_d2(d2)
{
STLSOFT_STATIC_ASSERT(R);
array_range_initialiser<T, A, P>::construct(*this, data_(), size());
}
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline fixed_array_3d<T, A, P, R>::fixed_array_3d(ss_typename_type_k fixed_array_3d<T, A, P, R>::index_type d0, ss_typename_type_k fixed_array_3d<T, A, P, R>::index_type d1, ss_typename_type_k fixed_array_3d<T, A, P, R>::index_type d2, ss_typename_type_k fixed_array_3d<T, A, P, R>::allocator_type const& ator)
: allocator_type(ator)
, m_data(allocate_(d0 * d1 * d2))
, m_d0(d0)
, m_d1(d1)
, m_d2(d2)
{
STLSOFT_STATIC_ASSERT(R);
array_range_initialiser<T, A, P>::construct(*this, data_(), size());
}
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline fixed_array_3d<T, A, P, R>::fixed_array_3d(ss_typename_type_k fixed_array_3d<T, A, P, R>::index_type d0, ss_typename_type_k fixed_array_3d<T, A, P, R>::index_type d1, ss_typename_type_k fixed_array_3d<T, A, P, R>::index_type d2, ss_typename_type_k fixed_array_3d<T, A, P, R>::value_type const& t)
: m_data(allocate_(d0 * d1 * d2))
, m_d0(d0)
, m_d1(d1)
, m_d2(d2)
{
STLSOFT_STATIC_ASSERT(R);
array_range_initialiser<T, A, P>::construct(*this, data_(), size(), t);
}
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline fixed_array_3d<T, A, P, R>::fixed_array_3d(ss_typename_type_k fixed_array_3d<T, A, P, R>::index_type d0, ss_typename_type_k fixed_array_3d<T, A, P, R>::index_type d1, ss_typename_type_k fixed_array_3d<T, A, P, R>::index_type d2, ss_typename_type_k fixed_array_3d<T, A, P, R>::value_type const& t, ss_typename_type_k fixed_array_3d<T, A, P, R>::allocator_type const& ator)
: allocator_type(ator)
, m_data(allocate_(d0 * d1 * d2))
, m_d0(d0)
, m_d1(d1)
, m_d2(d2)
{
STLSOFT_STATIC_ASSERT(R);
array_range_initialiser<T, A, P>::construct(*this, data_(), size(), t);
}
#ifdef STLSOFT_MULTIDIM_ARRAY_FEATURE_REQUIRES_COPY_CTOR_WITH_RVO
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline fixed_array_3d<T, A, P, R>::fixed_array_3d(fixed_array_3d<T, A, P, R> const& rhs)
: m_data(R ? allocate_(rhs.dimension0() * rhs.dimension1() * rhs.dimension2()) : rhs.m_data)
, m_d0(rhs.dimension0())
, m_d1(rhs.dimension1())
, m_d2(rhs.dimension2())
{
if(R)
{
array_range_initialiser<T, A, P>::copy_construct(*this, data_(), rhs.data(), size());
}
}
#else /* ? STLSOFT_MULTIDIM_ARRAY_FEATURE_REQUIRES_COPY_CTOR_WITH_RVO */
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline fixed_array_3d<T, A, P, R>::fixed_array_3d(fixed_array_3d<T, A, P, R> const& rhs)
: m_data(allocate_(rhs.dimension0() * rhs.dimension1() * rhs.dimension2()))
, m_d0(rhs.dimension0())
, m_d1(rhs.dimension1())
, m_d2(rhs.dimension2())
{
STLSOFT_STATIC_ASSERT(R);
array_range_initialiser<T, A, P>::copy_construct(*this, data_(), rhs.data(), size());
}
#endif /* STLSOFT_MULTIDIM_ARRAY_FEATURE_REQUIRES_COPY_CTOR_WITH_RVO */
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline fixed_array_3d<T, A, P, R>::~fixed_array_3d() stlsoft_throw_0()
{
if(R)
{
array_range_initialiser<T, A, P>::destroy(*this, data_(), size());
deallocate_(m_data, size());
}
}
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline ss_typename_type_k fixed_array_3d<T, A, P, R>::allocator_type fixed_array_3d<T, A, P, R>::get_allocator() const
{
return *this;
}
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline void fixed_array_3d<T, A, P, R>::swap(ss_typename_type_k fixed_array_3d<T, A, P, R>::class_type& rhs) stlsoft_throw_0()
{
// We don't need to do any construct and swap here, because all the
// variables that are being swapped are simple types (integers and
// pointers).
std_swap(get_allocator_(), rhs.get_allocator_());
std_swap(m_data, rhs.m_data);
std_swap(m_d0, rhs.m_d0);
std_swap(m_d1, rhs.m_d1);
std_swap(m_d2, rhs.m_d2);
}
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline ss_typename_type_ret_k fixed_array_3d<T, A, P, R>::reference fixed_array_3d<T, A, P, R>::at(ss_typename_type_k fixed_array_3d<T, A, P, R>::index_type i0, ss_typename_type_k fixed_array_3d<T, A, P, R>::index_type i1, ss_typename_type_k fixed_array_3d<T, A, P, R>::index_type i2)
{
range_check_(i0, i1, i2);
return *(m_data + calc_index_(i0, i1, i2));
}
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline ss_typename_type_ret_k fixed_array_3d<T, A, P, R>::const_reference fixed_array_3d<T, A, P, R>::at(ss_typename_type_k fixed_array_3d<T, A, P, R>::index_type i0, ss_typename_type_k fixed_array_3d<T, A, P, R>::index_type i1, ss_typename_type_k fixed_array_3d<T, A, P, R>::index_type i2) const
{
range_check_(i0, i1, i2);
return *(m_data + calc_index_(i0, i1, i2));
}
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline ss_typename_type_ret_k fixed_array_3d<T, A, P, R>::reference fixed_array_3d<T, A, P, R>::at_unchecked(ss_typename_type_k fixed_array_3d<T, A, P, R>::index_type i0, ss_typename_type_k fixed_array_3d<T, A, P, R>::index_type i1, ss_typename_type_k fixed_array_3d<T, A, P, R>::index_type i2)
{
STLSOFT_MESSAGE_ASSERT("fixed array index out of range", (i0 < m_d0 && i1 < m_d1 && i2 < m_d2));
return *(m_data + calc_index_(i0, i1, i2));
}
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline ss_typename_type_ret_k fixed_array_3d<T, A, P, R>::const_reference fixed_array_3d<T, A, P, R>::at_unchecked(ss_typename_type_k fixed_array_3d<T, A, P, R>::index_type i0, ss_typename_type_k fixed_array_3d<T, A, P, R>::index_type i1, ss_typename_type_k fixed_array_3d<T, A, P, R>::index_type i2) const
{
STLSOFT_MESSAGE_ASSERT("fixed array index out of range", (i0 < m_d0 && i1 < m_d1 && i2 < m_d2));
return *(m_data + calc_index_(i0, i1, i2));
}
#ifndef STLSOFT_FIXED_ARRAY_NO_FUNCTION_OP
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline ss_typename_type_ret_k fixed_array_3d<T, A, P, R>::reference fixed_array_3d<T, A, P, R>::operator ()(ss_typename_type_k fixed_array_3d<T, A, P, R>::index_type i0, ss_typename_type_k fixed_array_3d<T, A, P, R>::index_type i1, ss_typename_type_k fixed_array_3d<T, A, P, R>::index_type i2)
{
return at_unchecked(i0, i1, i2);
}
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline ss_typename_type_ret_k fixed_array_3d<T, A, P, R>::const_reference fixed_array_3d<T, A, P, R>::operator ()(ss_typename_type_k fixed_array_3d<T, A, P, R>::index_type i0, ss_typename_type_k fixed_array_3d<T, A, P, R>::index_type i1, ss_typename_type_k fixed_array_3d<T, A, P, R>::index_type i2) const
{
return at_unchecked(i0, i1, i2);
}
#endif /* !STLSOFT_FIXED_ARRAY_NO_FUNCTION_OP */
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline ss_typename_type_ret_k fixed_array_3d<T, A, P, R>::dimension_element_type fixed_array_3d<T, A, P, R>::at(ss_typename_type_k fixed_array_3d<T, A, P, R>::index_type i0)
{
range_check_(i0);
return dimension_element_type(m_data + i0 * m_d1 * m_d2, m_d1, m_d2);
}
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline ss_typename_type_ret_k fixed_array_3d<T, A, P, R>::const_dimension_element_type fixed_array_3d<T, A, P, R>::at(ss_typename_type_k fixed_array_3d<T, A, P, R>::index_type i0) const
{
range_check_(i0);
return dimension_element_type(m_data + i0 * m_d1 * m_d2, m_d1, m_d2);
}
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline ss_typename_type_ret_k fixed_array_3d<T, A, P, R>::dimension_element_type fixed_array_3d<T, A, P, R>::at_unchecked(ss_typename_type_k fixed_array_3d<T, A, P, R>::index_type i0)
{
STLSOFT_MESSAGE_ASSERT("fixed array index out of range", i0 < m_d0);
return dimension_element_type(m_data + i0 * m_d1 * m_d2, m_d1, m_d2);
}
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline ss_typename_type_ret_k fixed_array_3d<T, A, P, R>::const_dimension_element_type fixed_array_3d<T, A, P, R>::at_unchecked(ss_typename_type_k fixed_array_3d<T, A, P, R>::index_type i0) const
{
STLSOFT_MESSAGE_ASSERT("fixed array index out of range", i0 < m_d0);
return dimension_element_type(m_data + i0 * m_d1 * m_d2, m_d1, m_d2);
}
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline ss_typename_type_ret_k fixed_array_3d<T, A, P, R>::dimension_element_type fixed_array_3d<T, A, P, R>::operator [](ss_typename_type_k fixed_array_3d<T, A, P, R>::index_type i0)
{
STLSOFT_MESSAGE_ASSERT("fixed array index out of range", i0 < m_d0);
return dimension_element_type(m_data + i0 * m_d1 * m_d2, m_d1, m_d2);
}
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline ss_typename_type_ret_k fixed_array_3d<T, A, P, R>::const_dimension_element_type fixed_array_3d<T, A, P, R>::operator [](ss_typename_type_k fixed_array_3d<T, A, P, R>::index_type i0) const
{
STLSOFT_MESSAGE_ASSERT("fixed array index out of range", i0 < m_d0);
return dimension_element_type(m_data + i0 * m_d1 * m_d2, m_d1, m_d2);
}
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline ss_typename_type_ret_k fixed_array_3d<T, A, P, R>::reference fixed_array_3d<T, A, P, R>::front()
{
return at(0, 0, 0);
}
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline ss_typename_type_ret_k fixed_array_3d<T, A, P, R>::reference fixed_array_3d<T, A, P, R>::back()
{
return at(m_d0 - 1, m_d1 - 1, m_d2 - 1);
}
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline ss_typename_type_ret_k fixed_array_3d<T, A, P, R>::const_reference fixed_array_3d<T, A, P, R>::front() const
{
return at(0, 0, 0);
}
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline ss_typename_type_ret_k fixed_array_3d<T, A, P, R>::const_reference fixed_array_3d<T, A, P, R>::back() const
{
return at(m_d0 - 1, m_d1 - 1, m_d2 - 1);
}
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline ss_typename_type_ret_k fixed_array_3d<T, A, P, R>::index_type fixed_array_3d<T, A, P, R>::dimension0() const
{
return m_d0;
}
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline ss_typename_type_ret_k fixed_array_3d<T, A, P, R>::index_type fixed_array_3d<T, A, P, R>::dimension1() const
{
return m_d1;
}
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline ss_typename_type_ret_k fixed_array_3d<T, A, P, R>::index_type fixed_array_3d<T, A, P, R>::dimension2() const
{
return m_d2;
}
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline ss_typename_type_ret_k fixed_array_3d<T, A, P, R>::index_type fixed_array_3d<T, A, P, R>::size() const
{
return m_d0 * m_d1 * m_d2;
}
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline ss_typename_type_ret_k fixed_array_3d<T, A, P, R>::bool_type fixed_array_3d<T, A, P, R>::empty() const
{
return 0 == size();
}
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline /* static */ ss_typename_type_ret_k fixed_array_3d<T, A, P, R>::size_type fixed_array_3d<T, A, P, R>::max_size()
{
return static_cast<size_type>(-1) / sizeof(T);
}
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline ss_typename_type_ret_k fixed_array_3d<T, A, P, R>::iterator fixed_array_3d<T, A, P, R>::begin()
{
return m_data;
}
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline ss_typename_type_ret_k fixed_array_3d<T, A, P, R>::iterator fixed_array_3d<T, A, P, R>::end()
{
return m_data + size();
}
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline ss_typename_type_ret_k fixed_array_3d<T, A, P, R>::const_iterator fixed_array_3d<T, A, P, R>::begin() const
{
return m_data;
}
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline ss_typename_type_ret_k fixed_array_3d<T, A, P, R>::const_iterator fixed_array_3d<T, A, P, R>::end() const
{
return m_data + size();
}
#if defined(STLSOFT_LF_BIDIRECTIONAL_ITERATOR_SUPPORT)
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline ss_typename_type_ret_k fixed_array_3d<T, A, P, R>::reverse_iterator fixed_array_3d<T, A, P, R>::rbegin()
{
return reverse_iterator(end());
}
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline ss_typename_type_ret_k fixed_array_3d<T, A, P, R>::reverse_iterator fixed_array_3d<T, A, P, R>::rend()
{
return reverse_iterator(begin());
}
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline ss_typename_type_ret_k fixed_array_3d<T, A, P, R>::const_reverse_iterator fixed_array_3d<T, A, P, R>::rbegin() const
{
return const_reverse_iterator(end());
}
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline ss_typename_type_ret_k fixed_array_3d<T, A, P, R>::const_reverse_iterator fixed_array_3d<T, A, P, R>::rend() const
{
return const_reverse_iterator(begin());
}
#endif /* STLSOFT_LF_BIDIRECTIONAL_ITERATOR_SUPPORT */
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline ss_typename_type_ret_k fixed_array_3d<T, A, P, R>::pointer fixed_array_3d<T, A, P, R>::data()
{
return m_data;
}
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline ss_typename_type_ret_k fixed_array_3d<T, A, P, R>::const_pointer fixed_array_3d<T, A, P, R>::data() const
{
return m_data;
}
// fixed_array_4d
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline ss_typename_type_ret_k fixed_array_4d<T, A, P, R>::pointer fixed_array_4d<T, A, P, R>::allocate_(ss_typename_type_k fixed_array_4d<T, A, P, R>::size_type n)
{
allocator_type &ator = *this;
return ator.allocate(n, NULL);
}
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline void fixed_array_4d<T, A, P, R>::deallocate_(ss_typename_type_k fixed_array_4d<T, A, P, R>::pointer p, ss_typename_type_k fixed_array_4d<T, A, P, R>::size_type n)
{
allocator_type &ator = *this;
ator.deallocate(p, n);
}
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline ss_typename_type_ret_k fixed_array_4d<T, A, P, R>::pointer fixed_array_4d<T, A, P, R>::data_()
{
return m_data;
}
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline ss_typename_type_ret_k fixed_array_4d<T, A, P, R>::index_type fixed_array_4d<T, A, P, R>::calc_index_(ss_typename_type_k fixed_array_4d<T, A, P, R>::index_type i0, index_type i1, index_type i2, index_type i3) const
{
return (((i0 * m_d1) + i1) * m_d2 + i2) * m_d3 + i3;
}
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline void fixed_array_4d<T, A, P, R>::range_check_(ss_typename_param_k fixed_array_4d<T, A, P, R>::index_type i0, ss_typename_param_k fixed_array_4d<T, A, P, R>::index_type i1, ss_typename_param_k fixed_array_4d<T, A, P, R>::index_type i2, ss_typename_param_k fixed_array_4d<T, A, P, R>::index_type i3) const stlsoft_throw_1(stlsoft_ns_qual_std(out_of_range) )
{
#ifdef STLSOFT_CF_EXCEPTION_SUPPORT
if( !(i0 < m_d0) ||
!(i1 < m_d1) ||
!(i2 < m_d2) ||
!(i3 < m_d3))
{
STLSOFT_THROW_X(stlsoft_ns_qual_std(out_of_range)("fixed array index out of range"));
}
#else
STLSOFT_MESSAGE_ASSERT("fixed array index out of range", (i0 < m_d0 && i1 < m_d1 && i2 < m_d2 && i3 < m_d3));
#endif /* STLSOFT_CF_EXCEPTION_SUPPORT */
}
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline ss_typename_type_k fixed_array_4d<T, A, P, R>::allocator_type& fixed_array_4d<T, A, P, R>::get_allocator_()
{
return *this;
}
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline void fixed_array_4d<T, A, P, R>::range_check_(ss_typename_param_k fixed_array_4d<T, A, P, R>::index_type i0) const stlsoft_throw_1(stlsoft_ns_qual_std(out_of_range) )
{
#ifdef STLSOFT_CF_EXCEPTION_SUPPORT
if(!(i0 < m_d0))
{
STLSOFT_THROW_X(stlsoft_ns_qual_std(out_of_range)("fixed array index out of range"));
}
#else
STLSOFT_MESSAGE_ASSERT("fixed array index out of range", i0 < m_d0);
#endif /* STLSOFT_CF_EXCEPTION_SUPPORT */
}
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline fixed_array_4d<T, A, P, R>::fixed_array_4d(T* src, ss_typename_param_k fixed_array_4d<T, A, P, R>::index_type d0, ss_typename_param_k fixed_array_4d<T, A, P, R>::index_type d1, ss_typename_param_k fixed_array_4d<T, A, P, R>::index_type d2, ss_typename_param_k fixed_array_4d<T, A, P, R>::index_type d3)
: m_data(src)
, m_d0(d0)
, m_d1(d1)
, m_d2(d2)
, m_d3(d3)
{
STLSOFT_STATIC_ASSERT(!R);
}
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline fixed_array_4d<T, A, P, R>::fixed_array_4d(ss_typename_param_k fixed_array_4d<T, A, P, R>::index_type d0, ss_typename_param_k fixed_array_4d<T, A, P, R>::index_type d1, ss_typename_param_k fixed_array_4d<T, A, P, R>::index_type d2, ss_typename_param_k fixed_array_4d<T, A, P, R>::index_type d3)
: m_data(allocate_(d0 * d1 * d2 * d3))
, m_d0(d0)
, m_d1(d1)
, m_d2(d2)
, m_d3(d3)
{
STLSOFT_STATIC_ASSERT(R);
array_range_initialiser<T, A, P>::construct(*this, data_(), size());
}
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline fixed_array_4d<T, A, P, R>::fixed_array_4d(ss_typename_param_k fixed_array_4d<T, A, P, R>::index_type d0, ss_typename_param_k fixed_array_4d<T, A, P, R>::index_type d1, ss_typename_param_k fixed_array_4d<T, A, P, R>::index_type d2, ss_typename_param_k fixed_array_4d<T, A, P, R>::index_type d3, ss_typename_param_k fixed_array_4d<T, A, P, R>::allocator_type const& ator)
: allocator_type(ator)
, m_data(allocate_(d0 * d1 * d2 * d3))
, m_d0(d0)
, m_d1(d1)
, m_d2(d2)
, m_d3(d3)
{
STLSOFT_STATIC_ASSERT(R);
array_range_initialiser<T, A, P>::construct(*this, data_(), size());
}
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline fixed_array_4d<T, A, P, R>::fixed_array_4d(ss_typename_param_k fixed_array_4d<T, A, P, R>::index_type d0, ss_typename_param_k fixed_array_4d<T, A, P, R>::index_type d1, ss_typename_param_k fixed_array_4d<T, A, P, R>::index_type d2, ss_typename_param_k fixed_array_4d<T, A, P, R>::index_type d3, ss_typename_param_k fixed_array_4d<T, A, P, R>::value_type const& t)
: m_data(allocate_(d0 * d1 * d2 * d3))
, m_d0(d0)
, m_d1(d1)
, m_d2(d2)
, m_d3(d3)
{
STLSOFT_STATIC_ASSERT(R);
array_range_initialiser<T, A, P>::construct(*this, data_(), size(), t);
}
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline fixed_array_4d<T, A, P, R>::fixed_array_4d(ss_typename_param_k fixed_array_4d<T, A, P, R>::index_type d0, ss_typename_param_k fixed_array_4d<T, A, P, R>::index_type d1, ss_typename_param_k fixed_array_4d<T, A, P, R>::index_type d2, ss_typename_param_k fixed_array_4d<T, A, P, R>::index_type d3, ss_typename_param_k fixed_array_4d<T, A, P, R>::value_type const& t, ss_typename_param_k fixed_array_4d<T, A, P, R>::allocator_type const& ator)
: allocator_type(ator)
, m_data(allocate_(d0 * d1 * d2 * d3))
, m_d0(d0)
, m_d1(d1)
, m_d2(d2)
, m_d3(d3)
{
STLSOFT_STATIC_ASSERT(R);
array_range_initialiser<T, A, P>::construct(*this, data_(), size(), t);
}
#ifdef STLSOFT_MULTIDIM_ARRAY_FEATURE_REQUIRES_COPY_CTOR_WITH_RVO
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline fixed_array_4d<T, A, P, R>::fixed_array_4d(fixed_array_4d<T, A, P, R> const& rhs)
: m_data(R ? allocate_(rhs.dimension0() * rhs.dimension1() * rhs.dimension2() * rhs.dimension3()) : rhs.m_data)
, m_d0(rhs.dimension0())
, m_d1(rhs.dimension1())
, m_d2(rhs.dimension2())
, m_d3(rhs.dimension3())
{
if(R)
{
array_range_initialiser<T, A, P>::copy_construct(*this, data_(), rhs.data(), size());
}
}
#else /* ? STLSOFT_MULTIDIM_ARRAY_FEATURE_REQUIRES_COPY_CTOR_WITH_RVO */
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline fixed_array_4d<T, A, P, R>::fixed_array_4d(fixed_array_4d<T, A, P, R> const& rhs)
: m_data(allocate_(rhs.dimension0() * rhs.dimension1() * rhs.dimension2() * rhs.dimension3()))
, m_d0(rhs.dimension0())
, m_d1(rhs.dimension1())
, m_d2(rhs.dimension2())
, m_d3(rhs.dimension3())
{
STLSOFT_STATIC_ASSERT(R);
array_range_initialiser<T, A, P>::copy_construct(*this, data_(), rhs.data(), size());
}
#endif /* STLSOFT_MULTIDIM_ARRAY_FEATURE_REQUIRES_COPY_CTOR_WITH_RVO */
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline fixed_array_4d<T, A, P, R>::~fixed_array_4d() stlsoft_throw_0()
{
if(R)
{
array_range_initialiser<T, A, P>::destroy(*this, data_(), size());
deallocate_(m_data, size());
}
}
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline ss_typename_type_k fixed_array_4d<T, A, P, R>::allocator_type fixed_array_4d<T, A, P, R>::get_allocator() const
{
return *this;
}
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline void fixed_array_4d<T, A, P, R>::swap(ss_typename_type_k fixed_array_4d<T, A, P, R>::class_type& rhs) stlsoft_throw_0()
{
// We don't need to do any construct and swap here, because all the
// variables that are being swapped are simple types (integers and
// pointers).
std_swap(get_allocator_(), rhs.get_allocator_());
std_swap(m_data, rhs.m_data);
std_swap(m_d0, rhs.m_d0);
std_swap(m_d1, rhs.m_d1);
std_swap(m_d2, rhs.m_d2);
std_swap(m_d3, rhs.m_d3);
}
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline ss_typename_type_ret_k fixed_array_4d<T, A, P, R>::reference fixed_array_4d<T, A, P, R>::at(ss_typename_param_k fixed_array_4d<T, A, P, R>::index_type i0, ss_typename_param_k fixed_array_4d<T, A, P, R>::index_type i1, ss_typename_param_k fixed_array_4d<T, A, P, R>::index_type i2, ss_typename_param_k fixed_array_4d<T, A, P, R>::index_type i3)
{
range_check_(i0, i1, i2, i3);
return *(m_data + calc_index_(i0, i1, i2, i3));
}
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline ss_typename_type_ret_k fixed_array_4d<T, A, P, R>::const_reference fixed_array_4d<T, A, P, R>::at(ss_typename_param_k fixed_array_4d<T, A, P, R>::index_type i0, ss_typename_param_k fixed_array_4d<T, A, P, R>::index_type i1, ss_typename_param_k fixed_array_4d<T, A, P, R>::index_type i2, ss_typename_param_k fixed_array_4d<T, A, P, R>::index_type i3) const
{
range_check_(i0, i1, i2, i3);
return *(m_data + calc_index_(i0, i1, i2, i3));
}
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline ss_typename_type_ret_k fixed_array_4d<T, A, P, R>::reference fixed_array_4d<T, A, P, R>::at_unchecked(ss_typename_param_k fixed_array_4d<T, A, P, R>::index_type i0, ss_typename_param_k fixed_array_4d<T, A, P, R>::index_type i1, ss_typename_param_k fixed_array_4d<T, A, P, R>::index_type i2, ss_typename_param_k fixed_array_4d<T, A, P, R>::index_type i3)
{
STLSOFT_MESSAGE_ASSERT("fixed array index out of range", (i0 < m_d0 && i1 < m_d1 && i2 < m_d2 && i3 < m_d3));
return *(m_data + calc_index_(i0, i1, i2, i3));
}
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline ss_typename_type_ret_k fixed_array_4d<T, A, P, R>::const_reference fixed_array_4d<T, A, P, R>::at_unchecked(ss_typename_param_k fixed_array_4d<T, A, P, R>::index_type i0, ss_typename_param_k fixed_array_4d<T, A, P, R>::index_type i1, ss_typename_param_k fixed_array_4d<T, A, P, R>::index_type i2, ss_typename_param_k fixed_array_4d<T, A, P, R>::index_type i3) const
{
STLSOFT_MESSAGE_ASSERT("fixed array index out of range", (i0 < m_d0 && i1 < m_d1 && i2 < m_d2 && i3 < m_d3));
return *(m_data + calc_index_(i0, i1, i2, i3));
}
#ifndef STLSOFT_FIXED_ARRAY_NO_FUNCTION_OP
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline ss_typename_type_ret_k fixed_array_4d<T, A, P, R>::reference fixed_array_4d<T, A, P, R>::operator ()(ss_typename_param_k fixed_array_4d<T, A, P, R>::index_type i0, ss_typename_param_k fixed_array_4d<T, A, P, R>::index_type i1, ss_typename_param_k fixed_array_4d<T, A, P, R>::index_type i2, ss_typename_param_k fixed_array_4d<T, A, P, R>::index_type i3)
{
return at_unchecked(i0, i1, i2, i3);
}
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline ss_typename_type_ret_k fixed_array_4d<T, A, P, R>::const_reference fixed_array_4d<T, A, P, R>::operator ()(ss_typename_param_k fixed_array_4d<T, A, P, R>::index_type i0, ss_typename_param_k fixed_array_4d<T, A, P, R>::index_type i1, ss_typename_param_k fixed_array_4d<T, A, P, R>::index_type i2, ss_typename_param_k fixed_array_4d<T, A, P, R>::index_type i3) const
{
return at_unchecked(i0, i1, i2, i3);
}
#endif /* !STLSOFT_FIXED_ARRAY_NO_FUNCTION_OP */
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline ss_typename_type_ret_k fixed_array_4d<T, A, P, R>::dimension_element_type fixed_array_4d<T, A, P, R>::at(ss_typename_param_k fixed_array_4d<T, A, P, R>::index_type i0)
{
range_check_(i0);
return dimension_element_type(m_data + i0 * m_d1 * m_d2 * m_d3, m_d1, m_d2, m_d3);
}
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline ss_typename_type_k fixed_array_4d<T, A, P, R>::const_dimension_element_type fixed_array_4d<T, A, P, R>::at(ss_typename_param_k fixed_array_4d<T, A, P, R>::index_type i0) const
{
range_check_(i0);
return dimension_element_type(m_data + i0 * m_d1 * m_d2 * m_d3, m_d1, m_d2, m_d3);
}
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline ss_typename_type_ret_k fixed_array_4d<T, A, P, R>::dimension_element_type fixed_array_4d<T, A, P, R>::at_unchecked(ss_typename_param_k fixed_array_4d<T, A, P, R>::index_type i0)
{
STLSOFT_MESSAGE_ASSERT("fixed array index out of range", i0 < m_d0);
return dimension_element_type(m_data + i0 * m_d1 * m_d2 * m_d3, m_d1, m_d2, m_d3);
}
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline ss_typename_type_ret_k fixed_array_4d<T, A, P, R>::const_dimension_element_type fixed_array_4d<T, A, P, R>::at_unchecked(ss_typename_param_k fixed_array_4d<T, A, P, R>::index_type i0) const
{
STLSOFT_MESSAGE_ASSERT("fixed array index out of range", i0 < m_d0);
return dimension_element_type(m_data + i0 * m_d1 * m_d2 * m_d3, m_d1, m_d2, m_d3);
}
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline ss_typename_type_ret_k fixed_array_4d<T, A, P, R>::dimension_element_type fixed_array_4d<T, A, P, R>::operator [](ss_typename_param_k fixed_array_4d<T, A, P, R>::index_type i0)
{
STLSOFT_MESSAGE_ASSERT("fixed array index out of range", i0 < m_d0);
return dimension_element_type(m_data + i0 * m_d1 * m_d2 * m_d3, m_d1, m_d2, m_d3);
}
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline ss_typename_type_ret_k fixed_array_4d<T, A, P, R>::const_dimension_element_type fixed_array_4d<T, A, P, R>::operator [](ss_typename_param_k fixed_array_4d<T, A, P, R>::index_type i0) const
{
STLSOFT_MESSAGE_ASSERT("fixed array index out of range", i0 < m_d0);
return dimension_element_type(m_data + i0 * m_d1 * m_d2 * m_d3, m_d1, m_d2, m_d3);
}
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline ss_typename_type_ret_k fixed_array_4d<T, A, P, R>::reference fixed_array_4d<T, A, P, R>::front()
{
return at(0, 0, 0, 0);
}
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline ss_typename_type_ret_k fixed_array_4d<T, A, P, R>::reference fixed_array_4d<T, A, P, R>::back()
{
return at(m_d0 - 1, m_d1 - 1, m_d2 - 1, m_d3 - 1);
}
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline ss_typename_type_ret_k fixed_array_4d<T, A, P, R>::const_reference fixed_array_4d<T, A, P, R>::front() const
{
return at(0, 0, 0, 0);
}
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline ss_typename_type_ret_k fixed_array_4d<T, A, P, R>::const_reference fixed_array_4d<T, A, P, R>::back() const
{
return at(m_d0 - 1, m_d1 - 1, m_d2 - 1, m_d3 - 1);
}
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline ss_typename_type_ret_k fixed_array_4d<T, A, P, R>::index_type fixed_array_4d<T, A, P, R>::dimension0() const
{
return m_d0;
}
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline ss_typename_type_ret_k fixed_array_4d<T, A, P, R>::index_type fixed_array_4d<T, A, P, R>::dimension1() const
{
return m_d1;
}
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline ss_typename_type_ret_k fixed_array_4d<T, A, P, R>::index_type fixed_array_4d<T, A, P, R>::dimension2() const
{
return m_d2;
}
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline ss_typename_type_ret_k fixed_array_4d<T, A, P, R>::index_type fixed_array_4d<T, A, P, R>::dimension3() const
{
return m_d3;
}
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline ss_typename_type_ret_k fixed_array_4d<T, A, P, R>::index_type fixed_array_4d<T, A, P, R>::size() const
{
return m_d0 * m_d1 * m_d2 * m_d3;
}
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline ss_typename_type_ret_k fixed_array_4d<T, A, P, R>::bool_type fixed_array_4d<T, A, P, R>::empty() const
{
return 0 == size();
}
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline /* static */ ss_typename_type_ret_k fixed_array_4d<T, A, P, R>::size_type fixed_array_4d<T, A, P, R>::max_size()
{
return static_cast<size_type>(-1) / sizeof(T);
}
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline ss_typename_type_ret_k fixed_array_4d<T, A, P, R>::iterator fixed_array_4d<T, A, P, R>::begin()
{
return m_data;
}
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline ss_typename_type_ret_k fixed_array_4d<T, A, P, R>::iterator fixed_array_4d<T, A, P, R>::end()
{
return m_data + size();
}
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline ss_typename_type_ret_k fixed_array_4d<T, A, P, R>::const_iterator fixed_array_4d<T, A, P, R>::begin() const
{
return m_data;
}
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline ss_typename_type_ret_k fixed_array_4d<T, A, P, R>::const_iterator fixed_array_4d<T, A, P, R>::end() const
{
return m_data + size();
}
#if defined(STLSOFT_LF_BIDIRECTIONAL_ITERATOR_SUPPORT)
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline ss_typename_type_ret_k fixed_array_4d<T, A, P, R>::reverse_iterator fixed_array_4d<T, A, P, R>::rbegin()
{
return reverse_iterator(end());
}
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline ss_typename_type_ret_k fixed_array_4d<T, A, P, R>::reverse_iterator fixed_array_4d<T, A, P, R>::rend()
{
return reverse_iterator(begin());
}
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline ss_typename_type_ret_k fixed_array_4d<T, A, P, R>::const_reverse_iterator fixed_array_4d<T, A, P, R>::rbegin() const
{
return const_reverse_iterator(end());
}
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline ss_typename_type_ret_k fixed_array_4d<T, A, P, R>::const_reverse_iterator fixed_array_4d<T, A, P, R>::rend() const
{
return const_reverse_iterator(begin());
}
#endif /* STLSOFT_LF_BIDIRECTIONAL_ITERATOR_SUPPORT */
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline ss_typename_type_ret_k fixed_array_4d<T, A, P, R>::pointer fixed_array_4d<T, A, P, R>::data()
{
return m_data;
}
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R>
inline ss_typename_type_ret_k fixed_array_4d<T, A, P, R>::const_pointer fixed_array_4d<T, A, P, R>::data() const
{
return m_data;
}
#endif /* !STLSOFT_DOCUMENTATION_SKIP_SECTION */
/* /////////////////////////////////////////////////////////////////////////
* Shims
*/
template< ss_typename_param_k T
, ss_typename_param_k A
, ss_typename_param_k P
, ss_bool_t R
>
inline ss_size_t array_size(fixed_array_1d<T, A, P, R> const& ar)
{
return ar.size();
}
template< ss_typename_param_k T
, ss_typename_param_k A
, ss_typename_param_k P
, ss_bool_t R
>
inline ss_size_t array_size(fixed_array_2d<T, A, P, R> const& ar)
{
return ar.size();
}
template< ss_typename_param_k T
, ss_typename_param_k A
, ss_typename_param_k P
, ss_bool_t R
>
inline ss_size_t array_size(fixed_array_3d<T, A, P, R> const& ar)
{
return ar.size();
}
template< ss_typename_param_k T
, ss_typename_param_k A
, ss_typename_param_k P
, ss_bool_t R
>
inline ss_size_t array_size(fixed_array_4d<T, A, P, R> const& ar)
{
return ar.size();
}
#if 0
template< ss_typename_param_k T
, ss_typename_param_k A
, ss_typename_param_k P
, ss_bool_t R
>
inline ss_size_t array_size(fixed_array_5d<T, A, P, R> const& ar)
{
return ar.size();
}
#endif /* 0 */
/* ////////////////////////////////////////////////////////////////////// */
#ifndef _STLSOFT_NO_NAMESPACE
} // namespace stlsoft
#endif /* _STLSOFT_NO_NAMESPACE */
/* ////////////////////////////////////////////////////////////////////// */
#endif /* !STLSOFT_INCL_STLSOFT_CONTAINERS_HPP_FIXED_ARRAY */
/* ///////////////////////////// end of file //////////////////////////// */