You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							90 lines
						
					
					
						
							2.5 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							90 lines
						
					
					
						
							2.5 KiB
						
					
					
				| // This file is part of Eigen, a lightweight C++ template library | |
| // for linear algebra. | |
| // | |
| // Copyright (C) 2012 Desire Nuentsa Wakam <desire.nuentsa_wakam@inria.fr> | |
| // | |
| // This Source Code Form is subject to the terms of the Mozilla | |
| // Public License v. 2.0. If a copy of the MPL was not distributed | |
| #include "sparse.h" | |
| #include <Eigen/SparseQR> | |
|  | |
| 
 | |
| template<typename MatrixType,typename DenseMat> | |
| int generate_sparse_rectangular_problem(MatrixType& A, DenseMat& dA, int maxRows = 300, int maxCols = 300) | |
| { | |
|   eigen_assert(maxRows >= maxCols); | |
|   typedef typename MatrixType::Scalar Scalar; | |
|   int rows = internal::random<int>(1,maxRows); | |
|   int cols = internal::random<int>(1,rows); | |
|   double density = (std::max)(8./(rows*cols), 0.01); | |
|    | |
|   A.resize(rows,rows); | |
|   dA.resize(rows,rows); | |
|   initSparse<Scalar>(density, dA, A,ForceNonZeroDiag); | |
|   A.makeCompressed(); | |
|   int nop = internal::random<int>(0, internal::random<double>(0,1) > 0.5 ? cols/2 : 0); | |
|   for(int k=0; k<nop; ++k) | |
|   { | |
|     int j0 = internal::random<int>(0,cols-1); | |
|     int j1 = internal::random<int>(0,cols-1); | |
|     Scalar s = internal::random<Scalar>(); | |
|     A.col(j0)  = s * A.col(j1); | |
|     dA.col(j0) = s * dA.col(j1); | |
|   } | |
|   return rows; | |
| } | |
| 
 | |
| template<typename Scalar> void test_sparseqr_scalar() | |
| { | |
|   typedef SparseMatrix<Scalar,ColMajor> MatrixType;  | |
|   typedef Matrix<Scalar,Dynamic,Dynamic> DenseMat; | |
|   typedef Matrix<Scalar,Dynamic,1> DenseVector; | |
|   MatrixType A; | |
|   DenseMat dA; | |
|   DenseVector refX,x,b;  | |
|   SparseQR<MatrixType, AMDOrdering<int> > solver;  | |
|   generate_sparse_rectangular_problem(A,dA); | |
|    | |
|   int n = A.cols(); | |
|   b = DenseVector::Random(n); | |
|   solver.compute(A); | |
|   if (solver.info() != Success) | |
|   { | |
|     std::cerr << "sparse QR factorization failed\n"; | |
|     exit(0); | |
|     return; | |
|   } | |
|   x = solver.solve(b); | |
|   if (solver.info() != Success) | |
|   { | |
|     std::cerr << "sparse QR factorization failed\n"; | |
|     exit(0); | |
|     return; | |
|   }  | |
|   //Compare with a dense QR solver | |
|   ColPivHouseholderQR<DenseMat> dqr(dA); | |
|   refX = dqr.solve(b); | |
|    | |
|   VERIFY_IS_EQUAL(dqr.rank(), solver.rank()); | |
|    | |
|   if(solver.rank()<A.cols()) | |
|     VERIFY((dA * refX - b).norm() * 2 > (A * x - b).norm() ); | |
|   else | |
|     VERIFY_IS_APPROX(x, refX); | |
| 
 | |
|   // Compute explicitly the matrix Q | |
|   MatrixType Q, QtQ, idM; | |
|   Q = solver.matrixQ(); | |
|   //Check  ||Q' * Q - I || | |
|   QtQ = Q * Q.adjoint(); | |
|   idM.resize(Q.rows(), Q.rows()); idM.setIdentity(); | |
|   VERIFY(idM.isApprox(QtQ)); | |
| } | |
| void test_sparseqr() | |
| { | |
|   for(int i=0; i<g_repeat; ++i) | |
|   { | |
|     CALL_SUBTEST_1(test_sparseqr_scalar<double>()); | |
|     CALL_SUBTEST_2(test_sparseqr_scalar<std::complex<double> >()); | |
|   } | |
| }
 |