You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							252 lines
						
					
					
						
							11 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							252 lines
						
					
					
						
							11 KiB
						
					
					
				| // This file is part of Eigen, a lightweight C++ template library | |
| // for linear algebra. | |
| // | |
| // Copyright (C) 2008-2011 Gael Guennebaud <gael.guennebaud@inria.fr> | |
| // | |
| // This Source Code Form is subject to the terms of the Mozilla | |
| // Public License v. 2.0. If a copy of the MPL was not distributed | |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | |
|  | |
| #include "sparse.h" | |
|  | |
| template<typename SparseMatrixType, typename DenseMatrix, bool IsRowMajor=SparseMatrixType::IsRowMajor> struct test_outer; | |
| 
 | |
| template<typename SparseMatrixType, typename DenseMatrix> struct test_outer<SparseMatrixType,DenseMatrix,false> { | |
|   static void run(SparseMatrixType& m2, SparseMatrixType& m4, DenseMatrix& refMat2, DenseMatrix& refMat4) { | |
|     typedef typename SparseMatrixType::Index Index; | |
|     Index c  = internal::random<Index>(0,m2.cols()-1); | |
|     Index c1 = internal::random<Index>(0,m2.cols()-1); | |
|     VERIFY_IS_APPROX(m4=m2.col(c)*refMat2.col(c1).transpose(), refMat4=refMat2.col(c)*refMat2.col(c1).transpose()); | |
|     VERIFY_IS_APPROX(m4=refMat2.col(c1)*m2.col(c).transpose(), refMat4=refMat2.col(c1)*refMat2.col(c).transpose()); | |
|   } | |
| }; | |
| 
 | |
| template<typename SparseMatrixType, typename DenseMatrix> struct test_outer<SparseMatrixType,DenseMatrix,true> { | |
|   static void run(SparseMatrixType& m2, SparseMatrixType& m4, DenseMatrix& refMat2, DenseMatrix& refMat4) { | |
|     typedef typename SparseMatrixType::Index Index; | |
|     Index r  = internal::random<Index>(0,m2.rows()-1); | |
|     Index c1 = internal::random<Index>(0,m2.cols()-1); | |
|     VERIFY_IS_APPROX(m4=m2.row(r).transpose()*refMat2.col(c1).transpose(), refMat4=refMat2.row(r).transpose()*refMat2.col(c1).transpose()); | |
|     VERIFY_IS_APPROX(m4=refMat2.col(c1)*m2.row(r), refMat4=refMat2.col(c1)*refMat2.row(r)); | |
|   } | |
| }; | |
| 
 | |
| // (m2,m4,refMat2,refMat4,dv1); | |
| //     VERIFY_IS_APPROX(m4=m2.innerVector(c)*dv1.transpose(), refMat4=refMat2.colVector(c)*dv1.transpose()); | |
| //     VERIFY_IS_APPROX(m4=dv1*mcm.col(c).transpose(), refMat4=dv1*refMat2.col(c).transpose()); | |
|  | |
| template<typename SparseMatrixType> void sparse_product() | |
| { | |
|   typedef typename SparseMatrixType::Index Index; | |
|   Index n = 100; | |
|   const Index rows  = internal::random<Index>(1,n); | |
|   const Index cols  = internal::random<Index>(1,n); | |
|   const Index depth = internal::random<Index>(1,n); | |
|   typedef typename SparseMatrixType::Scalar Scalar; | |
|   enum { Flags = SparseMatrixType::Flags }; | |
| 
 | |
|   double density = (std::max)(8./(rows*cols), 0.1); | |
|   typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix; | |
|   typedef Matrix<Scalar,Dynamic,1> DenseVector; | |
|   typedef Matrix<Scalar,1,Dynamic> RowDenseVector; | |
|   typedef SparseVector<Scalar,0,Index> ColSpVector; | |
|   typedef SparseVector<Scalar,RowMajor,Index> RowSpVector; | |
| 
 | |
|   Scalar s1 = internal::random<Scalar>(); | |
|   Scalar s2 = internal::random<Scalar>(); | |
| 
 | |
|   // test matrix-matrix product | |
|   { | |
|     DenseMatrix refMat2  = DenseMatrix::Zero(rows, depth); | |
|     DenseMatrix refMat2t = DenseMatrix::Zero(depth, rows); | |
|     DenseMatrix refMat3  = DenseMatrix::Zero(depth, cols); | |
|     DenseMatrix refMat3t = DenseMatrix::Zero(cols, depth); | |
|     DenseMatrix refMat4  = DenseMatrix::Zero(rows, cols); | |
|     DenseMatrix refMat4t = DenseMatrix::Zero(cols, rows); | |
|     DenseMatrix refMat5  = DenseMatrix::Random(depth, cols); | |
|     DenseMatrix refMat6  = DenseMatrix::Random(rows, rows); | |
|     DenseMatrix dm4 = DenseMatrix::Zero(rows, rows); | |
| //     DenseVector dv1 = DenseVector::Random(rows); | |
|     SparseMatrixType m2 (rows, depth); | |
|     SparseMatrixType m2t(depth, rows); | |
|     SparseMatrixType m3 (depth, cols); | |
|     SparseMatrixType m3t(cols, depth); | |
|     SparseMatrixType m4 (rows, cols); | |
|     SparseMatrixType m4t(cols, rows); | |
|     SparseMatrixType m6(rows, rows); | |
|     initSparse(density, refMat2,  m2); | |
|     initSparse(density, refMat2t, m2t); | |
|     initSparse(density, refMat3,  m3); | |
|     initSparse(density, refMat3t, m3t); | |
|     initSparse(density, refMat4,  m4); | |
|     initSparse(density, refMat4t, m4t); | |
|     initSparse(density, refMat6, m6); | |
| 
 | |
| //     int c = internal::random<int>(0,depth-1); | |
|  | |
|     // sparse * sparse | |
|     VERIFY_IS_APPROX(m4=m2*m3, refMat4=refMat2*refMat3); | |
|     VERIFY_IS_APPROX(m4=m2t.transpose()*m3, refMat4=refMat2t.transpose()*refMat3); | |
|     VERIFY_IS_APPROX(m4=m2t.transpose()*m3t.transpose(), refMat4=refMat2t.transpose()*refMat3t.transpose()); | |
|     VERIFY_IS_APPROX(m4=m2*m3t.transpose(), refMat4=refMat2*refMat3t.transpose()); | |
| 
 | |
|     VERIFY_IS_APPROX(m4 = m2*m3/s1, refMat4 = refMat2*refMat3/s1); | |
|     VERIFY_IS_APPROX(m4 = m2*m3*s1, refMat4 = refMat2*refMat3*s1); | |
|     VERIFY_IS_APPROX(m4 = s2*m2*m3*s1, refMat4 = s2*refMat2*refMat3*s1); | |
| 
 | |
|     VERIFY_IS_APPROX(m4=(m2*m3).pruned(0), refMat4=refMat2*refMat3); | |
|     VERIFY_IS_APPROX(m4=(m2t.transpose()*m3).pruned(0), refMat4=refMat2t.transpose()*refMat3); | |
|     VERIFY_IS_APPROX(m4=(m2t.transpose()*m3t.transpose()).pruned(0), refMat4=refMat2t.transpose()*refMat3t.transpose()); | |
|     VERIFY_IS_APPROX(m4=(m2*m3t.transpose()).pruned(0), refMat4=refMat2*refMat3t.transpose()); | |
| 
 | |
|     // test aliasing | |
|     m4 = m2; refMat4 = refMat2; | |
|     VERIFY_IS_APPROX(m4=m4*m3, refMat4=refMat4*refMat3); | |
| 
 | |
|     // sparse * dense | |
|     VERIFY_IS_APPROX(dm4=m2*refMat3, refMat4=refMat2*refMat3); | |
|     VERIFY_IS_APPROX(dm4=m2*refMat3t.transpose(), refMat4=refMat2*refMat3t.transpose()); | |
|     VERIFY_IS_APPROX(dm4=m2t.transpose()*refMat3, refMat4=refMat2t.transpose()*refMat3); | |
|     VERIFY_IS_APPROX(dm4=m2t.transpose()*refMat3t.transpose(), refMat4=refMat2t.transpose()*refMat3t.transpose()); | |
| 
 | |
|     VERIFY_IS_APPROX(dm4=m2*(refMat3+refMat3), refMat4=refMat2*(refMat3+refMat3)); | |
|     VERIFY_IS_APPROX(dm4=m2t.transpose()*(refMat3+refMat5)*0.5, refMat4=refMat2t.transpose()*(refMat3+refMat5)*0.5); | |
| 
 | |
|     // dense * sparse | |
|     VERIFY_IS_APPROX(dm4=refMat2*m3, refMat4=refMat2*refMat3); | |
|     VERIFY_IS_APPROX(dm4=refMat2*m3t.transpose(), refMat4=refMat2*refMat3t.transpose()); | |
|     VERIFY_IS_APPROX(dm4=refMat2t.transpose()*m3, refMat4=refMat2t.transpose()*refMat3); | |
|     VERIFY_IS_APPROX(dm4=refMat2t.transpose()*m3t.transpose(), refMat4=refMat2t.transpose()*refMat3t.transpose()); | |
| 
 | |
|     // sparse * dense and dense * sparse outer product | |
|     test_outer<SparseMatrixType,DenseMatrix>::run(m2,m4,refMat2,refMat4); | |
| 
 | |
|     VERIFY_IS_APPROX(m6=m6*m6, refMat6=refMat6*refMat6); | |
|      | |
|     // sparse matrix * sparse vector | |
|     ColSpVector cv0(cols), cv1; | |
|     DenseVector dcv0(cols), dcv1; | |
|     initSparse(2*density,dcv0, cv0); | |
|      | |
|     RowSpVector rv0(depth), rv1; | |
|     RowDenseVector drv0(depth), drv1(rv1); | |
|     initSparse(2*density,drv0, rv0); | |
|      | |
|     VERIFY_IS_APPROX(cv1=rv0*m3, dcv1=drv0*refMat3); | |
|     VERIFY_IS_APPROX(rv1=rv0*m3, drv1=drv0*refMat3); | |
|     VERIFY_IS_APPROX(cv1=m3*cv0, dcv1=refMat3*dcv0); | |
|     VERIFY_IS_APPROX(cv1=m3t.adjoint()*cv0, dcv1=refMat3t.adjoint()*dcv0); | |
|     VERIFY_IS_APPROX(rv1=m3*cv0, drv1=refMat3*dcv0); | |
|   } | |
|    | |
|   // test matrix - diagonal product | |
|   { | |
|     DenseMatrix refM2 = DenseMatrix::Zero(rows, cols); | |
|     DenseMatrix refM3 = DenseMatrix::Zero(rows, cols); | |
|     DenseMatrix d3 = DenseMatrix::Zero(rows, cols); | |
|     DiagonalMatrix<Scalar,Dynamic> d1(DenseVector::Random(cols)); | |
|     DiagonalMatrix<Scalar,Dynamic> d2(DenseVector::Random(rows)); | |
|     SparseMatrixType m2(rows, cols); | |
|     SparseMatrixType m3(rows, cols); | |
|     initSparse<Scalar>(density, refM2, m2); | |
|     initSparse<Scalar>(density, refM3, m3); | |
|     VERIFY_IS_APPROX(m3=m2*d1, refM3=refM2*d1); | |
|     VERIFY_IS_APPROX(m3=m2.transpose()*d2, refM3=refM2.transpose()*d2); | |
|     VERIFY_IS_APPROX(m3=d2*m2, refM3=d2*refM2); | |
|     VERIFY_IS_APPROX(m3=d1*m2.transpose(), refM3=d1*refM2.transpose()); | |
|      | |
|     // also check with a SparseWrapper: | |
|     DenseVector v1 = DenseVector::Random(cols); | |
|     DenseVector v2 = DenseVector::Random(rows); | |
|     VERIFY_IS_APPROX(m3=m2*v1.asDiagonal(), refM3=refM2*v1.asDiagonal()); | |
|     VERIFY_IS_APPROX(m3=m2.transpose()*v2.asDiagonal(), refM3=refM2.transpose()*v2.asDiagonal()); | |
|     VERIFY_IS_APPROX(m3=v2.asDiagonal()*m2, refM3=v2.asDiagonal()*refM2); | |
|     VERIFY_IS_APPROX(m3=v1.asDiagonal()*m2.transpose(), refM3=v1.asDiagonal()*refM2.transpose()); | |
|      | |
|     VERIFY_IS_APPROX(m3=v2.asDiagonal()*m2*v1.asDiagonal(), refM3=v2.asDiagonal()*refM2*v1.asDiagonal()); | |
|      | |
|     // evaluate to a dense matrix to check the .row() and .col() iterator functions | |
|     VERIFY_IS_APPROX(d3=m2*d1, refM3=refM2*d1); | |
|     VERIFY_IS_APPROX(d3=m2.transpose()*d2, refM3=refM2.transpose()*d2); | |
|     VERIFY_IS_APPROX(d3=d2*m2, refM3=d2*refM2); | |
|     VERIFY_IS_APPROX(d3=d1*m2.transpose(), refM3=d1*refM2.transpose()); | |
|   } | |
| 
 | |
|   // test self adjoint products | |
|   { | |
|     DenseMatrix b = DenseMatrix::Random(rows, rows); | |
|     DenseMatrix x = DenseMatrix::Random(rows, rows); | |
|     DenseMatrix refX = DenseMatrix::Random(rows, rows); | |
|     DenseMatrix refUp = DenseMatrix::Zero(rows, rows); | |
|     DenseMatrix refLo = DenseMatrix::Zero(rows, rows); | |
|     DenseMatrix refS = DenseMatrix::Zero(rows, rows); | |
|     SparseMatrixType mUp(rows, rows); | |
|     SparseMatrixType mLo(rows, rows); | |
|     SparseMatrixType mS(rows, rows); | |
|     do { | |
|       initSparse<Scalar>(density, refUp, mUp, ForceRealDiag|/*ForceNonZeroDiag|*/MakeUpperTriangular); | |
|     } while (refUp.isZero()); | |
|     refLo = refUp.adjoint(); | |
|     mLo = mUp.adjoint(); | |
|     refS = refUp + refLo; | |
|     refS.diagonal() *= 0.5; | |
|     mS = mUp + mLo; | |
|     // TODO be able to address the diagonal.... | |
|     for (int k=0; k<mS.outerSize(); ++k) | |
|       for (typename SparseMatrixType::InnerIterator it(mS,k); it; ++it) | |
|         if (it.index() == k) | |
|           it.valueRef() *= 0.5; | |
| 
 | |
|     VERIFY_IS_APPROX(refS.adjoint(), refS); | |
|     VERIFY_IS_APPROX(mS.adjoint(), mS); | |
|     VERIFY_IS_APPROX(mS, refS); | |
|     VERIFY_IS_APPROX(x=mS*b, refX=refS*b); | |
| 
 | |
|     VERIFY_IS_APPROX(x=mUp.template selfadjointView<Upper>()*b, refX=refS*b); | |
|     VERIFY_IS_APPROX(x=mLo.template selfadjointView<Lower>()*b, refX=refS*b); | |
|     VERIFY_IS_APPROX(x=mS.template selfadjointView<Upper|Lower>()*b, refX=refS*b); | |
|      | |
|     // sparse selfadjointView * sparse  | |
|     SparseMatrixType mSres(rows,rows); | |
|     VERIFY_IS_APPROX(mSres = mLo.template selfadjointView<Lower>()*mS, | |
|                      refX = refLo.template selfadjointView<Lower>()*refS); | |
|     // sparse * sparse selfadjointview | |
|     VERIFY_IS_APPROX(mSres = mS * mLo.template selfadjointView<Lower>(), | |
|                      refX = refS * refLo.template selfadjointView<Lower>()); | |
|   } | |
|    | |
| } | |
| 
 | |
| // New test for Bug in SparseTimeDenseProduct | |
| template<typename SparseMatrixType, typename DenseMatrixType> void sparse_product_regression_test() | |
| { | |
|   // This code does not compile with afflicted versions of the bug | |
|   SparseMatrixType sm1(3,2); | |
|   DenseMatrixType m2(2,2); | |
|   sm1.setZero(); | |
|   m2.setZero(); | |
| 
 | |
|   DenseMatrixType m3 = sm1*m2; | |
| 
 | |
| 
 | |
|   // This code produces a segfault with afflicted versions of another SparseTimeDenseProduct | |
|   // bug | |
|  | |
|   SparseMatrixType sm2(20000,2); | |
|   sm2.setZero(); | |
|   DenseMatrixType m4(sm2*m2); | |
| 
 | |
|   VERIFY_IS_APPROX( m4(0,0), 0.0 ); | |
| } | |
| 
 | |
| void test_sparse_product() | |
| { | |
|   for(int i = 0; i < g_repeat; i++) { | |
|     CALL_SUBTEST_1( (sparse_product<SparseMatrix<double,ColMajor> >()) ); | |
|     CALL_SUBTEST_1( (sparse_product<SparseMatrix<double,RowMajor> >()) ); | |
|     CALL_SUBTEST_2( (sparse_product<SparseMatrix<std::complex<double>, ColMajor > >()) ); | |
|     CALL_SUBTEST_2( (sparse_product<SparseMatrix<std::complex<double>, RowMajor > >()) ); | |
|     CALL_SUBTEST_3( (sparse_product<SparseMatrix<float,ColMajor,long int> >()) ); | |
|     CALL_SUBTEST_4( (sparse_product_regression_test<SparseMatrix<double,RowMajor>, Matrix<double, Dynamic, Dynamic, RowMajor> >()) ); | |
|   } | |
| }
 |