You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							176 lines
						
					
					
						
							4.6 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							176 lines
						
					
					
						
							4.6 KiB
						
					
					
				| // This file is part of Eigen, a lightweight C++ template library | |
| // for linear algebra. | |
| // | |
| // Copyright (C) 2012 Desire Nuentsa <desire.nuentsa_wakam@inria.fr> | |
| // Copyright (C) 2012 Gael Guennebaud <gael.guennebaud@inria.fr> | |
| // | |
| // This Source Code Form is subject to the terms of the Mozilla | |
| // Public License v. 2.0. If a copy of the MPL was not distributed | |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | |
| #include <iostream> | |
| #include <fstream> | |
| #include <iomanip> | |
|  | |
| #include "main.h" | |
| #include <Eigen/LevenbergMarquardt> | |
|  | |
| using namespace std; | |
| using namespace Eigen; | |
| 
 | |
| template <typename Scalar> | |
| struct sparseGaussianTest : SparseFunctor<Scalar, int> | |
| { | |
|   typedef Matrix<Scalar,Dynamic,1> VectorType; | |
|   typedef SparseFunctor<Scalar,int> Base; | |
|   typedef typename Base::JacobianType JacobianType; | |
|   sparseGaussianTest(int inputs, int values) : SparseFunctor<Scalar,int>(inputs,values) | |
|   { } | |
|    | |
|   VectorType model(const VectorType& uv, VectorType& x) | |
|   { | |
|     VectorType y; //Change this to use expression template | |
|     int m = Base::values();  | |
|     int n = Base::inputs(); | |
|     eigen_assert(uv.size()%2 == 0); | |
|     eigen_assert(uv.size() == n); | |
|     eigen_assert(x.size() == m); | |
|     y.setZero(m); | |
|     int half = n/2; | |
|     VectorBlock<const VectorType> u(uv, 0, half); | |
|     VectorBlock<const VectorType> v(uv, half, half); | |
|     Scalar coeff; | |
|     for (int j = 0; j < m; j++) | |
|     { | |
|       for (int i = 0; i < half; i++)  | |
|       { | |
|         coeff = (x(j)-i)/v(i); | |
|         coeff *= coeff; | |
|         if (coeff < 1. && coeff > 0.) | |
|           y(j) += u(i)*std::pow((1-coeff), 2); | |
|       } | |
|     } | |
|     return y; | |
|   } | |
|   void initPoints(VectorType& uv_ref, VectorType& x) | |
|   { | |
|     m_x = x; | |
|     m_y = this->model(uv_ref,x); | |
|   } | |
|   int operator()(const VectorType& uv, VectorType& fvec) | |
|   { | |
|     int m = Base::values();  | |
|     int n = Base::inputs(); | |
|     eigen_assert(uv.size()%2 == 0); | |
|     eigen_assert(uv.size() == n); | |
|     int half = n/2; | |
|     VectorBlock<const VectorType> u(uv, 0, half); | |
|     VectorBlock<const VectorType> v(uv, half, half); | |
|     fvec = m_y; | |
|     Scalar coeff; | |
|     for (int j = 0; j < m; j++) | |
|     { | |
|       for (int i = 0; i < half; i++) | |
|       { | |
|         coeff = (m_x(j)-i)/v(i); | |
|         coeff *= coeff; | |
|         if (coeff < 1. && coeff > 0.) | |
|           fvec(j) -= u(i)*std::pow((1-coeff), 2); | |
|       } | |
|     } | |
|     return 0; | |
|   } | |
|    | |
|   int df(const VectorType& uv, JacobianType& fjac) | |
|   { | |
|     int m = Base::values();  | |
|     int n = Base::inputs(); | |
|     eigen_assert(n == uv.size()); | |
|     eigen_assert(fjac.rows() == m); | |
|     eigen_assert(fjac.cols() == n); | |
|     int half = n/2; | |
|     VectorBlock<const VectorType> u(uv, 0, half); | |
|     VectorBlock<const VectorType> v(uv, half, half); | |
|     Scalar coeff; | |
|      | |
|     //Derivatives with respect to u | |
|     for (int col = 0; col < half; col++) | |
|     { | |
|       for (int row = 0; row < m; row++) | |
|       { | |
|         coeff = (m_x(row)-col)/v(col); | |
|           coeff = coeff*coeff; | |
|         if(coeff < 1. && coeff > 0.) | |
|         { | |
|           fjac.coeffRef(row,col) = -(1-coeff)*(1-coeff); | |
|         } | |
|       } | |
|     } | |
|     //Derivatives with respect to v | |
|     for (int col = 0; col < half; col++) | |
|     { | |
|       for (int row = 0; row < m; row++) | |
|       { | |
|         coeff = (m_x(row)-col)/v(col); | |
|         coeff = coeff*coeff; | |
|         if(coeff < 1. && coeff > 0.) | |
|         { | |
|           fjac.coeffRef(row,col+half) = -4 * (u(col)/v(col))*coeff*(1-coeff); | |
|         } | |
|       } | |
|     } | |
|     return 0; | |
|   } | |
|    | |
|   VectorType m_x, m_y; //Data points | |
| }; | |
| 
 | |
| 
 | |
| template<typename T> | |
| void test_sparseLM_T() | |
| { | |
|   typedef Matrix<T,Dynamic,1> VectorType; | |
|    | |
|   int inputs = 10; | |
|   int values = 2000; | |
|   sparseGaussianTest<T> sparse_gaussian(inputs, values); | |
|   VectorType uv(inputs),uv_ref(inputs); | |
|   VectorType x(values); | |
|   // Generate the reference solution  | |
|   uv_ref << -2, 1, 4 ,8, 6, 1.8, 1.2, 1.1, 1.9 , 3; | |
|   //Generate the reference data points | |
|   x.setRandom(); | |
|   x = 10*x; | |
|   x.array() += 10; | |
|   sparse_gaussian.initPoints(uv_ref, x); | |
|    | |
|    | |
|   // Generate the initial parameters  | |
|   VectorBlock<VectorType> u(uv, 0, inputs/2);  | |
|   VectorBlock<VectorType> v(uv, inputs/2, inputs/2); | |
|   v.setOnes(); | |
|   //Generate u or Solve for u from v | |
|   u.setOnes(); | |
|    | |
|   // Solve the optimization problem | |
|   LevenbergMarquardt<sparseGaussianTest<T> > lm(sparse_gaussian); | |
|   int info; | |
| //   info = lm.minimize(uv); | |
|    | |
|   VERIFY_IS_EQUAL(info,1); | |
|     // Do a step by step solution and save the residual  | |
|   int maxiter = 200; | |
|   int iter = 0; | |
|   MatrixXd Err(values, maxiter); | |
|   MatrixXd Mod(values, maxiter); | |
|   LevenbergMarquardtSpace::Status status;  | |
|   status = lm.minimizeInit(uv); | |
|   if (status==LevenbergMarquardtSpace::ImproperInputParameters) | |
|       return ; | |
| 
 | |
| } | |
| void test_sparseLM() | |
| { | |
|   CALL_SUBTEST_1(test_sparseLM_T<double>()); | |
|    | |
|   // CALL_SUBTEST_2(test_sparseLM_T<std::complex<double>()); | |
| }
 |