You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							159 lines
						
					
					
						
							6.8 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							159 lines
						
					
					
						
							6.8 KiB
						
					
					
				| // This file is part of Eigen, a lightweight C++ template library | |
| // for linear algebra. | |
| // | |
| // Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com> | |
| // | |
| // This Source Code Form is subject to the terms of the Mozilla | |
| // Public License v. 2.0. If a copy of the MPL was not distributed | |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | |
|  | |
| #include "main.h" | |
|  | |
| template<typename MatrixType> void matrixRedux(const MatrixType& m) | |
| { | |
|   typedef typename MatrixType::Index Index; | |
|   typedef typename MatrixType::Scalar Scalar; | |
|   typedef typename MatrixType::RealScalar RealScalar; | |
| 
 | |
|   Index rows = m.rows(); | |
|   Index cols = m.cols(); | |
| 
 | |
|   MatrixType m1 = MatrixType::Random(rows, cols); | |
| 
 | |
|   // The entries of m1 are uniformly distributed in [0,1], so m1.prod() is very small. This may lead to test | |
|   // failures if we underflow into denormals. Thus, we scale so that entires are close to 1. | |
|   MatrixType m1_for_prod = MatrixType::Ones(rows, cols) + RealScalar(0.2) * m1; | |
| 
 | |
|   VERIFY_IS_MUCH_SMALLER_THAN(MatrixType::Zero(rows, cols).sum(), Scalar(1)); | |
|   VERIFY_IS_APPROX(MatrixType::Ones(rows, cols).sum(), Scalar(float(rows*cols))); // the float() here to shut up excessive MSVC warning about int->complex conversion being lossy | |
|   Scalar s(0), p(1), minc(numext::real(m1.coeff(0))), maxc(numext::real(m1.coeff(0))); | |
|   for(int j = 0; j < cols; j++) | |
|   for(int i = 0; i < rows; i++) | |
|   { | |
|     s += m1(i,j); | |
|     p *= m1_for_prod(i,j); | |
|     minc = (std::min)(numext::real(minc), numext::real(m1(i,j))); | |
|     maxc = (std::max)(numext::real(maxc), numext::real(m1(i,j))); | |
|   } | |
|   const Scalar mean = s/Scalar(RealScalar(rows*cols)); | |
| 
 | |
|   VERIFY_IS_APPROX(m1.sum(), s); | |
|   VERIFY_IS_APPROX(m1.mean(), mean); | |
|   VERIFY_IS_APPROX(m1_for_prod.prod(), p); | |
|   VERIFY_IS_APPROX(m1.real().minCoeff(), numext::real(minc)); | |
|   VERIFY_IS_APPROX(m1.real().maxCoeff(), numext::real(maxc)); | |
| 
 | |
|   // test slice vectorization assuming assign is ok | |
|   Index r0 = internal::random<Index>(0,rows-1); | |
|   Index c0 = internal::random<Index>(0,cols-1); | |
|   Index r1 = internal::random<Index>(r0+1,rows)-r0; | |
|   Index c1 = internal::random<Index>(c0+1,cols)-c0; | |
|   VERIFY_IS_APPROX(m1.block(r0,c0,r1,c1).sum(), m1.block(r0,c0,r1,c1).eval().sum()); | |
|   VERIFY_IS_APPROX(m1.block(r0,c0,r1,c1).mean(), m1.block(r0,c0,r1,c1).eval().mean()); | |
|   VERIFY_IS_APPROX(m1_for_prod.block(r0,c0,r1,c1).prod(), m1_for_prod.block(r0,c0,r1,c1).eval().prod()); | |
|   VERIFY_IS_APPROX(m1.block(r0,c0,r1,c1).real().minCoeff(), m1.block(r0,c0,r1,c1).real().eval().minCoeff()); | |
|   VERIFY_IS_APPROX(m1.block(r0,c0,r1,c1).real().maxCoeff(), m1.block(r0,c0,r1,c1).real().eval().maxCoeff()); | |
|    | |
|   // test empty objects | |
|   VERIFY_IS_APPROX(m1.block(r0,c0,0,0).sum(),   Scalar(0)); | |
|   VERIFY_IS_APPROX(m1.block(r0,c0,0,0).prod(),  Scalar(1)); | |
| } | |
| 
 | |
| template<typename VectorType> void vectorRedux(const VectorType& w) | |
| { | |
|   using std::abs; | |
|   typedef typename VectorType::Index Index; | |
|   typedef typename VectorType::Scalar Scalar; | |
|   typedef typename NumTraits<Scalar>::Real RealScalar; | |
|   Index size = w.size(); | |
| 
 | |
|   VectorType v = VectorType::Random(size); | |
|   VectorType v_for_prod = VectorType::Ones(size) + Scalar(0.2) * v; // see comment above declaration of m1_for_prod | |
|  | |
|   for(int i = 1; i < size; i++) | |
|   { | |
|     Scalar s(0), p(1); | |
|     RealScalar minc(numext::real(v.coeff(0))), maxc(numext::real(v.coeff(0))); | |
|     for(int j = 0; j < i; j++) | |
|     { | |
|       s += v[j]; | |
|       p *= v_for_prod[j]; | |
|       minc = (std::min)(minc, numext::real(v[j])); | |
|       maxc = (std::max)(maxc, numext::real(v[j])); | |
|     } | |
|     VERIFY_IS_MUCH_SMALLER_THAN(abs(s - v.head(i).sum()), Scalar(1)); | |
|     VERIFY_IS_APPROX(p, v_for_prod.head(i).prod()); | |
|     VERIFY_IS_APPROX(minc, v.real().head(i).minCoeff()); | |
|     VERIFY_IS_APPROX(maxc, v.real().head(i).maxCoeff()); | |
|   } | |
| 
 | |
|   for(int i = 0; i < size-1; i++) | |
|   { | |
|     Scalar s(0), p(1); | |
|     RealScalar minc(numext::real(v.coeff(i))), maxc(numext::real(v.coeff(i))); | |
|     for(int j = i; j < size; j++) | |
|     { | |
|       s += v[j]; | |
|       p *= v_for_prod[j]; | |
|       minc = (std::min)(minc, numext::real(v[j])); | |
|       maxc = (std::max)(maxc, numext::real(v[j])); | |
|     } | |
|     VERIFY_IS_MUCH_SMALLER_THAN(abs(s - v.tail(size-i).sum()), Scalar(1)); | |
|     VERIFY_IS_APPROX(p, v_for_prod.tail(size-i).prod()); | |
|     VERIFY_IS_APPROX(minc, v.real().tail(size-i).minCoeff()); | |
|     VERIFY_IS_APPROX(maxc, v.real().tail(size-i).maxCoeff()); | |
|   } | |
| 
 | |
|   for(int i = 0; i < size/2; i++) | |
|   { | |
|     Scalar s(0), p(1); | |
|     RealScalar minc(numext::real(v.coeff(i))), maxc(numext::real(v.coeff(i))); | |
|     for(int j = i; j < size-i; j++) | |
|     { | |
|       s += v[j]; | |
|       p *= v_for_prod[j]; | |
|       minc = (std::min)(minc, numext::real(v[j])); | |
|       maxc = (std::max)(maxc, numext::real(v[j])); | |
|     } | |
|     VERIFY_IS_MUCH_SMALLER_THAN(abs(s - v.segment(i, size-2*i).sum()), Scalar(1)); | |
|     VERIFY_IS_APPROX(p, v_for_prod.segment(i, size-2*i).prod()); | |
|     VERIFY_IS_APPROX(minc, v.real().segment(i, size-2*i).minCoeff()); | |
|     VERIFY_IS_APPROX(maxc, v.real().segment(i, size-2*i).maxCoeff()); | |
|   } | |
|    | |
|   // test empty objects | |
|   VERIFY_IS_APPROX(v.head(0).sum(),   Scalar(0)); | |
|   VERIFY_IS_APPROX(v.tail(0).prod(),  Scalar(1)); | |
|   VERIFY_RAISES_ASSERT(v.head(0).mean()); | |
|   VERIFY_RAISES_ASSERT(v.head(0).minCoeff()); | |
|   VERIFY_RAISES_ASSERT(v.head(0).maxCoeff()); | |
| } | |
| 
 | |
| void test_redux() | |
| { | |
|   // the max size cannot be too large, otherwise reduxion operations obviously generate large errors. | |
|   int maxsize = (std::min)(100,EIGEN_TEST_MAX_SIZE); | |
|   TEST_SET_BUT_UNUSED_VARIABLE(maxsize); | |
|   for(int i = 0; i < g_repeat; i++) { | |
|     CALL_SUBTEST_1( matrixRedux(Matrix<float, 1, 1>()) ); | |
|     CALL_SUBTEST_1( matrixRedux(Array<float, 1, 1>()) ); | |
|     CALL_SUBTEST_2( matrixRedux(Matrix2f()) ); | |
|     CALL_SUBTEST_2( matrixRedux(Array2f()) ); | |
|     CALL_SUBTEST_3( matrixRedux(Matrix4d()) ); | |
|     CALL_SUBTEST_3( matrixRedux(Array4d()) ); | |
|     CALL_SUBTEST_4( matrixRedux(MatrixXcf(internal::random<int>(1,maxsize), internal::random<int>(1,maxsize))) ); | |
|     CALL_SUBTEST_4( matrixRedux(ArrayXXcf(internal::random<int>(1,maxsize), internal::random<int>(1,maxsize))) ); | |
|     CALL_SUBTEST_5( matrixRedux(MatrixXd (internal::random<int>(1,maxsize), internal::random<int>(1,maxsize))) ); | |
|     CALL_SUBTEST_5( matrixRedux(ArrayXXd (internal::random<int>(1,maxsize), internal::random<int>(1,maxsize))) ); | |
|     CALL_SUBTEST_6( matrixRedux(MatrixXi (internal::random<int>(1,maxsize), internal::random<int>(1,maxsize))) ); | |
|     CALL_SUBTEST_6( matrixRedux(ArrayXXi (internal::random<int>(1,maxsize), internal::random<int>(1,maxsize))) ); | |
|   } | |
|   for(int i = 0; i < g_repeat; i++) { | |
|     CALL_SUBTEST_7( vectorRedux(Vector4f()) ); | |
|     CALL_SUBTEST_7( vectorRedux(Array4f()) ); | |
|     CALL_SUBTEST_5( vectorRedux(VectorXd(internal::random<int>(1,maxsize))) ); | |
|     CALL_SUBTEST_5( vectorRedux(ArrayXd(internal::random<int>(1,maxsize))) ); | |
|     CALL_SUBTEST_8( vectorRedux(VectorXf(internal::random<int>(1,maxsize))) ); | |
|     CALL_SUBTEST_8( vectorRedux(ArrayXf(internal::random<int>(1,maxsize))) ); | |
|   } | |
| }
 |