You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							62 lines
						
					
					
						
							2.3 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							62 lines
						
					
					
						
							2.3 KiB
						
					
					
				| // This file is part of Eigen, a lightweight C++ template library | |
| // for linear algebra. | |
| // | |
| // Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr> | |
| // Copyright (C) 2010 Jitse Niesen <jitse@maths.leeds.ac.uk> | |
| // | |
| // This Source Code Form is subject to the terms of the Mozilla | |
| // Public License v. 2.0. If a copy of the MPL was not distributed | |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | |
|  | |
| #include "main.h" | |
| #include <Eigen/Eigenvalues> | |
|  | |
| template<typename Scalar,int Size> void hessenberg(int size = Size) | |
| { | |
|   typedef Matrix<Scalar,Size,Size> MatrixType; | |
| 
 | |
|   // Test basic functionality: A = U H U* and H is Hessenberg | |
|   for(int counter = 0; counter < g_repeat; ++counter) { | |
|     MatrixType m = MatrixType::Random(size,size); | |
|     HessenbergDecomposition<MatrixType> hess(m); | |
|     MatrixType Q = hess.matrixQ(); | |
|     MatrixType H = hess.matrixH(); | |
|     VERIFY_IS_APPROX(m, Q * H * Q.adjoint()); | |
|     for(int row = 2; row < size; ++row) { | |
|       for(int col = 0; col < row-1; ++col) { | |
| 	VERIFY(H(row,col) == (typename MatrixType::Scalar)0); | |
|       } | |
|     } | |
|   } | |
| 
 | |
|   // Test whether compute() and constructor returns same result | |
|   MatrixType A = MatrixType::Random(size, size); | |
|   HessenbergDecomposition<MatrixType> cs1; | |
|   cs1.compute(A); | |
|   HessenbergDecomposition<MatrixType> cs2(A); | |
|   VERIFY_IS_EQUAL(cs1.matrixH().eval(), cs2.matrixH().eval()); | |
|   MatrixType cs1Q = cs1.matrixQ(); | |
|   MatrixType cs2Q = cs2.matrixQ();   | |
|   VERIFY_IS_EQUAL(cs1Q, cs2Q); | |
| 
 | |
|   // Test assertions for when used uninitialized | |
|   HessenbergDecomposition<MatrixType> hessUninitialized; | |
|   VERIFY_RAISES_ASSERT( hessUninitialized.matrixH() ); | |
|   VERIFY_RAISES_ASSERT( hessUninitialized.matrixQ() ); | |
|   VERIFY_RAISES_ASSERT( hessUninitialized.householderCoefficients() ); | |
|   VERIFY_RAISES_ASSERT( hessUninitialized.packedMatrix() ); | |
| 
 | |
|   // TODO: Add tests for packedMatrix() and householderCoefficients() | |
| } | |
| 
 | |
| void test_hessenberg() | |
| { | |
|   CALL_SUBTEST_1(( hessenberg<std::complex<double>,1>() )); | |
|   CALL_SUBTEST_2(( hessenberg<std::complex<double>,2>() )); | |
|   CALL_SUBTEST_3(( hessenberg<std::complex<float>,4>() )); | |
|   CALL_SUBTEST_4(( hessenberg<float,Dynamic>(internal::random<int>(1,EIGEN_TEST_MAX_SIZE)) )); | |
|   CALL_SUBTEST_5(( hessenberg<std::complex<double>,Dynamic>(internal::random<int>(1,EIGEN_TEST_MAX_SIZE)) )); | |
| 
 | |
|   // Test problem size constructors | |
|   CALL_SUBTEST_6(HessenbergDecomposition<MatrixXf>(10)); | |
| }
 |