You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							157 lines
						
					
					
						
							5.8 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							157 lines
						
					
					
						
							5.8 KiB
						
					
					
				| // This file is part of Eigen, a lightweight C++ template library | |
| // for linear algebra. | |
| // | |
| // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> | |
| // Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com> | |
| // | |
| // This Source Code Form is subject to the terms of the Mozilla | |
| // Public License v. 2.0. If a copy of the MPL was not distributed | |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | |
|  | |
| #include "main.h" | |
| #include <Eigen/Geometry> | |
| #include <Eigen/LU> | |
| #include <Eigen/QR> | |
|  | |
| template<typename HyperplaneType> void hyperplane(const HyperplaneType& _plane) | |
| { | |
|   /* this test covers the following files: | |
|      Hyperplane.h | |
|   */ | |
|   typedef typename HyperplaneType::Index Index; | |
|   const Index dim = _plane.dim(); | |
|   enum { Options = HyperplaneType::Options }; | |
|   typedef typename HyperplaneType::Scalar Scalar; | |
|   typedef Matrix<Scalar, HyperplaneType::AmbientDimAtCompileTime, 1> VectorType; | |
|   typedef Matrix<Scalar, HyperplaneType::AmbientDimAtCompileTime, | |
|                          HyperplaneType::AmbientDimAtCompileTime> MatrixType; | |
| 
 | |
|   VectorType p0 = VectorType::Random(dim); | |
|   VectorType p1 = VectorType::Random(dim); | |
| 
 | |
|   VectorType n0 = VectorType::Random(dim).normalized(); | |
|   VectorType n1 = VectorType::Random(dim).normalized(); | |
| 
 | |
|   HyperplaneType pl0(n0, p0); | |
|   HyperplaneType pl1(n1, p1); | |
|   HyperplaneType pl2 = pl1; | |
| 
 | |
|   Scalar s0 = internal::random<Scalar>(); | |
|   Scalar s1 = internal::random<Scalar>(); | |
| 
 | |
|   VERIFY_IS_APPROX( n1.dot(n1), Scalar(1) ); | |
| 
 | |
|   VERIFY_IS_MUCH_SMALLER_THAN( pl0.absDistance(p0), Scalar(1) ); | |
|   VERIFY_IS_APPROX( pl1.signedDistance(p1 + n1 * s0), s0 ); | |
|   VERIFY_IS_MUCH_SMALLER_THAN( pl1.signedDistance(pl1.projection(p0)), Scalar(1) ); | |
|   VERIFY_IS_MUCH_SMALLER_THAN( pl1.absDistance(p1 +  pl1.normal().unitOrthogonal() * s1), Scalar(1) ); | |
| 
 | |
|   // transform | |
|   if (!NumTraits<Scalar>::IsComplex) | |
|   { | |
|     MatrixType rot = MatrixType::Random(dim,dim).householderQr().householderQ(); | |
|     DiagonalMatrix<Scalar,HyperplaneType::AmbientDimAtCompileTime> scaling(VectorType::Random()); | |
|     Translation<Scalar,HyperplaneType::AmbientDimAtCompileTime> translation(VectorType::Random()); | |
| 
 | |
|     pl2 = pl1; | |
|     VERIFY_IS_MUCH_SMALLER_THAN( pl2.transform(rot).absDistance(rot * p1), Scalar(1) ); | |
|     pl2 = pl1; | |
|     VERIFY_IS_MUCH_SMALLER_THAN( pl2.transform(rot,Isometry).absDistance(rot * p1), Scalar(1) ); | |
|     pl2 = pl1; | |
|     VERIFY_IS_MUCH_SMALLER_THAN( pl2.transform(rot*scaling).absDistance((rot*scaling) * p1), Scalar(1) ); | |
|     pl2 = pl1; | |
|     VERIFY_IS_MUCH_SMALLER_THAN( pl2.transform(rot*scaling*translation) | |
|                                  .absDistance((rot*scaling*translation) * p1), Scalar(1) ); | |
|     pl2 = pl1; | |
|     VERIFY_IS_MUCH_SMALLER_THAN( pl2.transform(rot*translation,Isometry) | |
|                                  .absDistance((rot*translation) * p1), Scalar(1) ); | |
|   } | |
| 
 | |
|   // casting | |
|   const int Dim = HyperplaneType::AmbientDimAtCompileTime; | |
|   typedef typename GetDifferentType<Scalar>::type OtherScalar; | |
|   Hyperplane<OtherScalar,Dim,Options> hp1f = pl1.template cast<OtherScalar>(); | |
|   VERIFY_IS_APPROX(hp1f.template cast<Scalar>(),pl1); | |
|   Hyperplane<Scalar,Dim,Options> hp1d = pl1.template cast<Scalar>(); | |
|   VERIFY_IS_APPROX(hp1d.template cast<Scalar>(),pl1); | |
| } | |
| 
 | |
| template<typename Scalar> void lines() | |
| { | |
|   using std::abs; | |
|   typedef Hyperplane<Scalar, 2> HLine; | |
|   typedef ParametrizedLine<Scalar, 2> PLine; | |
|   typedef Matrix<Scalar,2,1> Vector; | |
|   typedef Matrix<Scalar,3,1> CoeffsType; | |
| 
 | |
|   for(int i = 0; i < 10; i++) | |
|   { | |
|     Vector center = Vector::Random(); | |
|     Vector u = Vector::Random(); | |
|     Vector v = Vector::Random(); | |
|     Scalar a = internal::random<Scalar>(); | |
|     while (abs(a-1) < 1e-4) a = internal::random<Scalar>(); | |
|     while (u.norm() < 1e-4) u = Vector::Random(); | |
|     while (v.norm() < 1e-4) v = Vector::Random(); | |
| 
 | |
|     HLine line_u = HLine::Through(center + u, center + a*u); | |
|     HLine line_v = HLine::Through(center + v, center + a*v); | |
| 
 | |
|     // the line equations should be normalized so that a^2+b^2=1 | |
|     VERIFY_IS_APPROX(line_u.normal().norm(), Scalar(1)); | |
|     VERIFY_IS_APPROX(line_v.normal().norm(), Scalar(1)); | |
| 
 | |
|     Vector result = line_u.intersection(line_v); | |
| 
 | |
|     // the lines should intersect at the point we called "center" | |
|     VERIFY_IS_APPROX(result, center); | |
| 
 | |
|     // check conversions between two types of lines | |
|     PLine pl(line_u); // gcc 3.3 will commit suicide if we don't name this variable | |
|     CoeffsType converted_coeffs = HLine(pl).coeffs(); | |
|     converted_coeffs *= (line_u.coeffs()[0])/(converted_coeffs[0]); | |
|     VERIFY(line_u.coeffs().isApprox(converted_coeffs)); | |
|   } | |
| } | |
| 
 | |
| template<typename Scalar> void hyperplane_alignment() | |
| { | |
|   typedef Hyperplane<Scalar,3,AutoAlign> Plane3a; | |
|   typedef Hyperplane<Scalar,3,DontAlign> Plane3u; | |
| 
 | |
|   EIGEN_ALIGN16 Scalar array1[4]; | |
|   EIGEN_ALIGN16 Scalar array2[4]; | |
|   EIGEN_ALIGN16 Scalar array3[4+1]; | |
|   Scalar* array3u = array3+1; | |
| 
 | |
|   Plane3a *p1 = ::new(reinterpret_cast<void*>(array1)) Plane3a; | |
|   Plane3u *p2 = ::new(reinterpret_cast<void*>(array2)) Plane3u; | |
|   Plane3u *p3 = ::new(reinterpret_cast<void*>(array3u)) Plane3u; | |
|    | |
|   p1->coeffs().setRandom(); | |
|   *p2 = *p1; | |
|   *p3 = *p1; | |
| 
 | |
|   VERIFY_IS_APPROX(p1->coeffs(), p2->coeffs()); | |
|   VERIFY_IS_APPROX(p1->coeffs(), p3->coeffs()); | |
|    | |
|   #if defined(EIGEN_VECTORIZE) && EIGEN_ALIGN_STATICALLY | |
|   if(internal::packet_traits<Scalar>::Vectorizable) | |
|     VERIFY_RAISES_ASSERT((::new(reinterpret_cast<void*>(array3u)) Plane3a)); | |
|   #endif | |
| } | |
| 
 | |
| 
 | |
| void test_geo_hyperplane() | |
| { | |
|   for(int i = 0; i < g_repeat; i++) { | |
|     CALL_SUBTEST_1( hyperplane(Hyperplane<float,2>()) ); | |
|     CALL_SUBTEST_2( hyperplane(Hyperplane<float,3>()) ); | |
|     CALL_SUBTEST_2( hyperplane(Hyperplane<float,3,DontAlign>()) ); | |
|     CALL_SUBTEST_2( hyperplane_alignment<float>() ); | |
|     CALL_SUBTEST_3( hyperplane(Hyperplane<double,4>()) ); | |
|     CALL_SUBTEST_4( hyperplane(Hyperplane<std::complex<double>,5>()) ); | |
|     CALL_SUBTEST_1( lines<float>() ); | |
|     CALL_SUBTEST_3( lines<double>() ); | |
|   } | |
| }
 |