You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							214 lines
						
					
					
						
							7.7 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							214 lines
						
					
					
						
							7.7 KiB
						
					
					
				| // This file is part of Eigen, a lightweight C++ template library | |
| // for linear algebra. | |
| // | |
| // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com> | |
| // | |
| // This Source Code Form is subject to the terms of the Mozilla | |
| // Public License v. 2.0. If a copy of the MPL was not distributed | |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | |
|  | |
| #define EIGEN_NO_STATIC_ASSERT | |
|  | |
| #include "main.h" | |
|  | |
| template<typename MatrixType> void basicStuff(const MatrixType& m) | |
| { | |
|   typedef typename MatrixType::Index Index; | |
|   typedef typename MatrixType::Scalar Scalar; | |
|   typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType; | |
|   typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> SquareMatrixType; | |
| 
 | |
|   Index rows = m.rows(); | |
|   Index cols = m.cols(); | |
| 
 | |
|   // this test relies a lot on Random.h, and there's not much more that we can do | |
|   // to test it, hence I consider that we will have tested Random.h | |
|   MatrixType m1 = MatrixType::Random(rows, cols), | |
|              m2 = MatrixType::Random(rows, cols), | |
|              m3(rows, cols), | |
|              mzero = MatrixType::Zero(rows, cols), | |
|              square = Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime>::Random(rows, rows); | |
|   VectorType v1 = VectorType::Random(rows), | |
|              vzero = VectorType::Zero(rows); | |
|   SquareMatrixType sm1 = SquareMatrixType::Random(rows,rows), sm2(rows,rows); | |
| 
 | |
|   Scalar x = 0; | |
|   while(x == Scalar(0)) x = internal::random<Scalar>(); | |
| 
 | |
|   Index r = internal::random<Index>(0, rows-1), | |
|         c = internal::random<Index>(0, cols-1); | |
| 
 | |
|   m1.coeffRef(r,c) = x; | |
|   VERIFY_IS_APPROX(x, m1.coeff(r,c)); | |
|   m1(r,c) = x; | |
|   VERIFY_IS_APPROX(x, m1(r,c)); | |
|   v1.coeffRef(r) = x; | |
|   VERIFY_IS_APPROX(x, v1.coeff(r)); | |
|   v1(r) = x; | |
|   VERIFY_IS_APPROX(x, v1(r)); | |
|   v1[r] = x; | |
|   VERIFY_IS_APPROX(x, v1[r]); | |
| 
 | |
|   VERIFY_IS_APPROX(               v1,    v1); | |
|   VERIFY_IS_NOT_APPROX(           v1,    2*v1); | |
|   VERIFY_IS_MUCH_SMALLER_THAN(    vzero, v1); | |
|   VERIFY_IS_MUCH_SMALLER_THAN(  vzero, v1.squaredNorm()); | |
|   VERIFY_IS_NOT_MUCH_SMALLER_THAN(v1,    v1); | |
|   VERIFY_IS_APPROX(               vzero, v1-v1); | |
|   VERIFY_IS_APPROX(               m1,    m1); | |
|   VERIFY_IS_NOT_APPROX(           m1,    2*m1); | |
|   VERIFY_IS_MUCH_SMALLER_THAN(    mzero, m1); | |
|   VERIFY_IS_NOT_MUCH_SMALLER_THAN(m1,    m1); | |
|   VERIFY_IS_APPROX(               mzero, m1-m1); | |
| 
 | |
|   // always test operator() on each read-only expression class, | |
|   // in order to check const-qualifiers. | |
|   // indeed, if an expression class (here Zero) is meant to be read-only, | |
|   // hence has no _write() method, the corresponding MatrixBase method (here zero()) | |
|   // should return a const-qualified object so that it is the const-qualified | |
|   // operator() that gets called, which in turn calls _read(). | |
|   VERIFY_IS_MUCH_SMALLER_THAN(MatrixType::Zero(rows,cols)(r,c), static_cast<Scalar>(1)); | |
| 
 | |
|   // now test copying a row-vector into a (column-)vector and conversely. | |
|   square.col(r) = square.row(r).eval(); | |
|   Matrix<Scalar, 1, MatrixType::RowsAtCompileTime> rv(rows); | |
|   Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> cv(rows); | |
|   rv = square.row(r); | |
|   cv = square.col(r); | |
|    | |
|   VERIFY_IS_APPROX(rv, cv.transpose()); | |
| 
 | |
|   if(cols!=1 && rows!=1 && MatrixType::SizeAtCompileTime!=Dynamic) | |
|   { | |
|     VERIFY_RAISES_ASSERT(m1 = (m2.block(0,0, rows-1, cols-1))); | |
|   } | |
| 
 | |
|   if(cols!=1 && rows!=1) | |
|   { | |
|     VERIFY_RAISES_ASSERT(m1[0]); | |
|     VERIFY_RAISES_ASSERT((m1+m1)[0]); | |
|   } | |
| 
 | |
|   VERIFY_IS_APPROX(m3 = m1,m1); | |
|   MatrixType m4; | |
|   VERIFY_IS_APPROX(m4 = m1,m1); | |
| 
 | |
|   m3.real() = m1.real(); | |
|   VERIFY_IS_APPROX(static_cast<const MatrixType&>(m3).real(), static_cast<const MatrixType&>(m1).real()); | |
|   VERIFY_IS_APPROX(static_cast<const MatrixType&>(m3).real(), m1.real()); | |
| 
 | |
|   // check == / != operators | |
|   VERIFY(m1==m1); | |
|   VERIFY(m1!=m2); | |
|   VERIFY(!(m1==m2)); | |
|   VERIFY(!(m1!=m1)); | |
|   m1 = m2; | |
|   VERIFY(m1==m2); | |
|   VERIFY(!(m1!=m2)); | |
|    | |
|   // check automatic transposition | |
|   sm2.setZero(); | |
|   for(typename MatrixType::Index i=0;i<rows;++i) | |
|     sm2.col(i) = sm1.row(i); | |
|   VERIFY_IS_APPROX(sm2,sm1.transpose()); | |
|    | |
|   sm2.setZero(); | |
|   for(typename MatrixType::Index i=0;i<rows;++i) | |
|     sm2.col(i).noalias() = sm1.row(i); | |
|   VERIFY_IS_APPROX(sm2,sm1.transpose()); | |
|    | |
|   sm2.setZero(); | |
|   for(typename MatrixType::Index i=0;i<rows;++i) | |
|     sm2.col(i).noalias() += sm1.row(i); | |
|   VERIFY_IS_APPROX(sm2,sm1.transpose()); | |
|    | |
|   sm2.setZero(); | |
|   for(typename MatrixType::Index i=0;i<rows;++i) | |
|     sm2.col(i).noalias() -= sm1.row(i); | |
|   VERIFY_IS_APPROX(sm2,-sm1.transpose()); | |
| } | |
| 
 | |
| template<typename MatrixType> void basicStuffComplex(const MatrixType& m) | |
| { | |
|   typedef typename MatrixType::Index Index; | |
|   typedef typename MatrixType::Scalar Scalar; | |
|   typedef typename NumTraits<Scalar>::Real RealScalar; | |
|   typedef Matrix<RealScalar, MatrixType::RowsAtCompileTime, MatrixType::ColsAtCompileTime> RealMatrixType; | |
| 
 | |
|   Index rows = m.rows(); | |
|   Index cols = m.cols(); | |
| 
 | |
|   Scalar s1 = internal::random<Scalar>(), | |
|          s2 = internal::random<Scalar>(); | |
| 
 | |
|   VERIFY(numext::real(s1)==numext::real_ref(s1)); | |
|   VERIFY(numext::imag(s1)==numext::imag_ref(s1)); | |
|   numext::real_ref(s1) = numext::real(s2); | |
|   numext::imag_ref(s1) = numext::imag(s2); | |
|   VERIFY(internal::isApprox(s1, s2, NumTraits<RealScalar>::epsilon())); | |
|   // extended precision in Intel FPUs means that s1 == s2 in the line above is not guaranteed. | |
|  | |
|   RealMatrixType rm1 = RealMatrixType::Random(rows,cols), | |
|                  rm2 = RealMatrixType::Random(rows,cols); | |
|   MatrixType cm(rows,cols); | |
|   cm.real() = rm1; | |
|   cm.imag() = rm2; | |
|   VERIFY_IS_APPROX(static_cast<const MatrixType&>(cm).real(), rm1); | |
|   VERIFY_IS_APPROX(static_cast<const MatrixType&>(cm).imag(), rm2); | |
|   rm1.setZero(); | |
|   rm2.setZero(); | |
|   rm1 = cm.real(); | |
|   rm2 = cm.imag(); | |
|   VERIFY_IS_APPROX(static_cast<const MatrixType&>(cm).real(), rm1); | |
|   VERIFY_IS_APPROX(static_cast<const MatrixType&>(cm).imag(), rm2); | |
|   cm.real().setZero(); | |
|   VERIFY(static_cast<const MatrixType&>(cm).real().isZero()); | |
|   VERIFY(!static_cast<const MatrixType&>(cm).imag().isZero()); | |
| } | |
| 
 | |
| #ifdef EIGEN_TEST_PART_2 | |
| void casting() | |
| { | |
|   Matrix4f m = Matrix4f::Random(), m2; | |
|   Matrix4d n = m.cast<double>(); | |
|   VERIFY(m.isApprox(n.cast<float>())); | |
|   m2 = m.cast<float>(); // check the specialization when NewType == Type | |
|   VERIFY(m.isApprox(m2)); | |
| } | |
| #endif | |
|  | |
| template <typename Scalar> | |
| void fixedSizeMatrixConstruction() | |
| { | |
|   const Scalar raw[3] = {1,2,3}; | |
|   Matrix<Scalar,3,1> m(raw); | |
|   Array<Scalar,3,1> a(raw); | |
|   VERIFY(m(0) == 1); | |
|   VERIFY(m(1) == 2); | |
|   VERIFY(m(2) == 3); | |
|   VERIFY(a(0) == 1); | |
|   VERIFY(a(1) == 2); | |
|   VERIFY(a(2) == 3);   | |
| } | |
| 
 | |
| void test_basicstuff() | |
| { | |
|   for(int i = 0; i < g_repeat; i++) { | |
|     CALL_SUBTEST_1( basicStuff(Matrix<float, 1, 1>()) ); | |
|     CALL_SUBTEST_2( basicStuff(Matrix4d()) ); | |
|     CALL_SUBTEST_3( basicStuff(MatrixXcf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); | |
|     CALL_SUBTEST_4( basicStuff(MatrixXi(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); | |
|     CALL_SUBTEST_5( basicStuff(MatrixXcd(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); | |
|     CALL_SUBTEST_6( basicStuff(Matrix<float, 100, 100>()) ); | |
|     CALL_SUBTEST_7( basicStuff(Matrix<long double,Dynamic,Dynamic>(internal::random<int>(1,EIGEN_TEST_MAX_SIZE),internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); | |
| 
 | |
|     CALL_SUBTEST_3( basicStuffComplex(MatrixXcf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); | |
|     CALL_SUBTEST_5( basicStuffComplex(MatrixXcd(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); | |
|   } | |
| 
 | |
|   CALL_SUBTEST_1(fixedSizeMatrixConstruction<unsigned char>()); | |
|   CALL_SUBTEST_1(fixedSizeMatrixConstruction<double>()); | |
|   CALL_SUBTEST_1(fixedSizeMatrixConstruction<double>()); | |
| 
 | |
|   CALL_SUBTEST_2(casting()); | |
| }
 |