You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							160 lines
						
					
					
						
							6.5 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							160 lines
						
					
					
						
							6.5 KiB
						
					
					
				| // This file is part of Eigen, a lightweight C++ template library | |
| // for linear algebra. | |
| // | |
| // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com> | |
| // | |
| // This Source Code Form is subject to the terms of the Mozilla | |
| // Public License v. 2.0. If a copy of the MPL was not distributed | |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | |
|  | |
| #define EIGEN_NO_STATIC_ASSERT | |
|  | |
| #include "main.h" | |
|  | |
| template<bool IsInteger> struct adjoint_specific; | |
| 
 | |
| template<> struct adjoint_specific<true> { | |
|   template<typename Vec, typename Mat, typename Scalar> | |
|   static void run(const Vec& v1, const Vec& v2, Vec& v3, const Mat& square, Scalar s1, Scalar s2) { | |
|     VERIFY(test_isApproxWithRef((s1 * v1 + s2 * v2).dot(v3),     numext::conj(s1) * v1.dot(v3) + numext::conj(s2) * v2.dot(v3), 0)); | |
|     VERIFY(test_isApproxWithRef(v3.dot(s1 * v1 + s2 * v2),       s1*v3.dot(v1)+s2*v3.dot(v2), 0)); | |
|      | |
|     // check compatibility of dot and adjoint | |
|     VERIFY(test_isApproxWithRef(v1.dot(square * v2), (square.adjoint() * v1).dot(v2), 0)); | |
|   } | |
| }; | |
| 
 | |
| template<> struct adjoint_specific<false> { | |
|   template<typename Vec, typename Mat, typename Scalar> | |
|   static void run(const Vec& v1, const Vec& v2, Vec& v3, const Mat& square, Scalar s1, Scalar s2) { | |
|     typedef typename NumTraits<Scalar>::Real RealScalar; | |
|     using std::abs; | |
|      | |
|     RealScalar ref = NumTraits<Scalar>::IsInteger ? RealScalar(0) : (std::max)((s1 * v1 + s2 * v2).norm(),v3.norm()); | |
|     VERIFY(test_isApproxWithRef((s1 * v1 + s2 * v2).dot(v3),     numext::conj(s1) * v1.dot(v3) + numext::conj(s2) * v2.dot(v3), ref)); | |
|     VERIFY(test_isApproxWithRef(v3.dot(s1 * v1 + s2 * v2),       s1*v3.dot(v1)+s2*v3.dot(v2), ref)); | |
|    | |
|     VERIFY_IS_APPROX(v1.squaredNorm(),                v1.norm() * v1.norm()); | |
|     // check normalized() and normalize() | |
|     VERIFY_IS_APPROX(v1, v1.norm() * v1.normalized()); | |
|     v3 = v1; | |
|     v3.normalize(); | |
|     VERIFY_IS_APPROX(v1, v1.norm() * v3); | |
|     VERIFY_IS_APPROX(v3, v1.normalized()); | |
|     VERIFY_IS_APPROX(v3.norm(), RealScalar(1)); | |
|      | |
|     // check compatibility of dot and adjoint | |
|     ref = NumTraits<Scalar>::IsInteger ? 0 : (std::max)((std::max)(v1.norm(),v2.norm()),(std::max)((square * v2).norm(),(square.adjoint() * v1).norm())); | |
|     VERIFY(internal::isMuchSmallerThan(abs(v1.dot(square * v2) - (square.adjoint() * v1).dot(v2)), ref, test_precision<Scalar>())); | |
|      | |
|     // check that Random().normalized() works: tricky as the random xpr must be evaluated by | |
|     // normalized() in order to produce a consistent result. | |
|     VERIFY_IS_APPROX(Vec::Random(v1.size()).normalized().norm(), RealScalar(1)); | |
|   } | |
| }; | |
| 
 | |
| template<typename MatrixType> void adjoint(const MatrixType& m) | |
| { | |
|   /* this test covers the following files: | |
|      Transpose.h Conjugate.h Dot.h | |
|   */ | |
|   using std::abs; | |
|   typedef typename MatrixType::Index Index; | |
|   typedef typename MatrixType::Scalar Scalar; | |
|   typedef typename NumTraits<Scalar>::Real RealScalar; | |
|   typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType; | |
|   typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> SquareMatrixType; | |
|    | |
|   Index rows = m.rows(); | |
|   Index cols = m.cols(); | |
| 
 | |
|   MatrixType m1 = MatrixType::Random(rows, cols), | |
|              m2 = MatrixType::Random(rows, cols), | |
|              m3(rows, cols), | |
|              square = SquareMatrixType::Random(rows, rows); | |
|   VectorType v1 = VectorType::Random(rows), | |
|              v2 = VectorType::Random(rows), | |
|              v3 = VectorType::Random(rows), | |
|              vzero = VectorType::Zero(rows); | |
| 
 | |
|   Scalar s1 = internal::random<Scalar>(), | |
|          s2 = internal::random<Scalar>(); | |
| 
 | |
|   // check basic compatibility of adjoint, transpose, conjugate | |
|   VERIFY_IS_APPROX(m1.transpose().conjugate().adjoint(),    m1); | |
|   VERIFY_IS_APPROX(m1.adjoint().conjugate().transpose(),    m1); | |
| 
 | |
|   // check multiplicative behavior | |
|   VERIFY_IS_APPROX((m1.adjoint() * m2).adjoint(),           m2.adjoint() * m1); | |
|   VERIFY_IS_APPROX((s1 * m1).adjoint(),                     numext::conj(s1) * m1.adjoint()); | |
| 
 | |
|   // check basic properties of dot, squaredNorm | |
|   VERIFY_IS_APPROX(numext::conj(v1.dot(v2)),               v2.dot(v1)); | |
|   VERIFY_IS_APPROX(numext::real(v1.dot(v1)),               v1.squaredNorm()); | |
|    | |
|   adjoint_specific<NumTraits<Scalar>::IsInteger>::run(v1, v2, v3, square, s1, s2); | |
|    | |
|   VERIFY_IS_MUCH_SMALLER_THAN(abs(vzero.dot(v1)),  static_cast<RealScalar>(1)); | |
|    | |
|   // like in testBasicStuff, test operator() to check const-qualification | |
|   Index r = internal::random<Index>(0, rows-1), | |
|       c = internal::random<Index>(0, cols-1); | |
|   VERIFY_IS_APPROX(m1.conjugate()(r,c), numext::conj(m1(r,c))); | |
|   VERIFY_IS_APPROX(m1.adjoint()(c,r), numext::conj(m1(r,c))); | |
| 
 | |
|   // check inplace transpose | |
|   m3 = m1; | |
|   m3.transposeInPlace(); | |
|   VERIFY_IS_APPROX(m3,m1.transpose()); | |
|   m3.transposeInPlace(); | |
|   VERIFY_IS_APPROX(m3,m1); | |
| 
 | |
|   // check inplace adjoint | |
|   m3 = m1; | |
|   m3.adjointInPlace(); | |
|   VERIFY_IS_APPROX(m3,m1.adjoint()); | |
|   m3.transposeInPlace(); | |
|   VERIFY_IS_APPROX(m3,m1.conjugate()); | |
| 
 | |
|   // check mixed dot product | |
|   typedef Matrix<RealScalar, MatrixType::RowsAtCompileTime, 1> RealVectorType; | |
|   RealVectorType rv1 = RealVectorType::Random(rows); | |
|   VERIFY_IS_APPROX(v1.dot(rv1.template cast<Scalar>()), v1.dot(rv1)); | |
|   VERIFY_IS_APPROX(rv1.template cast<Scalar>().dot(v1), rv1.dot(v1)); | |
| } | |
| 
 | |
| void test_adjoint() | |
| { | |
|   for(int i = 0; i < g_repeat; i++) { | |
|     CALL_SUBTEST_1( adjoint(Matrix<float, 1, 1>()) ); | |
|     CALL_SUBTEST_2( adjoint(Matrix3d()) ); | |
|     CALL_SUBTEST_3( adjoint(Matrix4f()) ); | |
|     CALL_SUBTEST_4( adjoint(MatrixXcf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2), internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2))) ); | |
|     CALL_SUBTEST_5( adjoint(MatrixXi(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); | |
|     CALL_SUBTEST_6( adjoint(MatrixXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); | |
|   } | |
|   // test a large static matrix only once | |
|   CALL_SUBTEST_7( adjoint(Matrix<float, 100, 100>()) ); | |
| 
 | |
| #ifdef EIGEN_TEST_PART_4 | |
|   { | |
|     MatrixXcf a(10,10), b(10,10); | |
|     VERIFY_RAISES_ASSERT(a = a.transpose()); | |
|     VERIFY_RAISES_ASSERT(a = a.transpose() + b); | |
|     VERIFY_RAISES_ASSERT(a = b + a.transpose()); | |
|     VERIFY_RAISES_ASSERT(a = a.conjugate().transpose()); | |
|     VERIFY_RAISES_ASSERT(a = a.adjoint()); | |
|     VERIFY_RAISES_ASSERT(a = a.adjoint() + b); | |
|     VERIFY_RAISES_ASSERT(a = b + a.adjoint()); | |
| 
 | |
|     // no assertion should be triggered for these cases: | |
|     a.transpose() = a.transpose(); | |
|     a.transpose() += a.transpose(); | |
|     a.transpose() += a.transpose() + b; | |
|     a.transpose() = a.adjoint(); | |
|     a.transpose() += a.adjoint(); | |
|     a.transpose() += a.adjoint() + b; | |
|   } | |
| #endif | |
| } | |
| 
 |