You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
267 lines
11 KiB
267 lines
11 KiB
/*
|
|
* EigenDtmcPrctlModelChecker.h
|
|
*
|
|
* Created on: 07.12.2012
|
|
* Author:
|
|
*/
|
|
|
|
#ifndef EIGENDTMCPRCTLMODELCHECKER_H_
|
|
#define EIGENDTMCPRCTLMODELCHECKER_H_
|
|
|
|
#include "src/utility/vector.h"
|
|
|
|
#include "src/models/Dtmc.h"
|
|
#include "src/modelChecker/DtmcPrctlModelChecker.h"
|
|
#include "src/solver/GraphAnalyzer.h"
|
|
#include "src/utility/const_templates.h"
|
|
#include "src/exceptions/NoConvergence.h"
|
|
|
|
#include "Eigen/Sparse"
|
|
#include "Eigen/src/IterativeLinearSolvers/BiCGSTAB.h"
|
|
|
|
#include "gmm/gmm_matrix.h"
|
|
#include "gmm/gmm_iter_solvers.h"
|
|
|
|
#include "log4cplus/logger.h"
|
|
#include "log4cplus/loggingmacros.h"
|
|
|
|
extern log4cplus::Logger logger;
|
|
|
|
namespace mrmc {
|
|
|
|
namespace modelChecker {
|
|
|
|
/*
|
|
* A model checking engine that makes use of the eigen backend.
|
|
*/
|
|
template <class Type>
|
|
class EigenDtmcPrctlModelChecker : public DtmcPrctlModelChecker<Type> {
|
|
|
|
public:
|
|
explicit EigenDtmcPrctlModelChecker(mrmc::models::Dtmc<Type>& dtmc) : DtmcPrctlModelChecker<Type>(dtmc) { }
|
|
|
|
virtual ~EigenDtmcPrctlModelChecker() { }
|
|
|
|
virtual mrmc::storage::BitVector* checkProbabilisticOperator(const mrmc::formula::ProbabilisticOperator<Type>& formula) const {
|
|
std::vector<Type>* probabilisticResult = this->checkPathFormula(formula.getPathFormula());
|
|
|
|
mrmc::storage::BitVector* result = new mrmc::storage::BitVector(this->getModel().getNumberOfStates());
|
|
Type bound = formula.getBound();
|
|
for (uint_fast64_t i = 0; i < this->getModel().getNumberOfStates(); ++i) {
|
|
if ((*probabilisticResult)[i] == bound) result->set(i, true);
|
|
}
|
|
|
|
delete probabilisticResult;
|
|
|
|
return result;
|
|
}
|
|
|
|
virtual mrmc::storage::BitVector* checkProbabilisticIntervalOperator(const mrmc::formula::ProbabilisticIntervalOperator<Type>& formula) const {
|
|
std::vector<Type>* probabilisticResult = this->checkPathFormula(formula.getPathFormula());
|
|
|
|
mrmc::storage::BitVector* result = new mrmc::storage::BitVector(this->getModel().getNumberOfStates());
|
|
Type lower = formula.getLowerBound();
|
|
Type upper = formula.getUpperBound();
|
|
for (uint_fast64_t i = 0; i < this->getModel().getNumberOfStates(); ++i) {
|
|
if ((*probabilisticResult)[i] >= lower && (*probabilisticResult)[i] <= upper) result->set(i, true);
|
|
}
|
|
|
|
delete probabilisticResult;
|
|
|
|
return result;
|
|
}
|
|
|
|
virtual std::vector<Type>* checkBoundedUntil(const mrmc::formula::BoundedUntil<Type>& formula) const {
|
|
// First, we need to compute the states that satisfy the sub-formulas of the until-formula.
|
|
mrmc::storage::BitVector* leftStates = this->checkStateFormula(formula.getLeft());
|
|
mrmc::storage::BitVector* rightStates = this->checkStateFormula(formula.getRight());
|
|
|
|
// Copy the matrix before we make any changes.
|
|
mrmc::storage::SquareSparseMatrix<Type> tmpMatrix(*this->getModel().getTransitionProbabilityMatrix());
|
|
|
|
// Make all rows absorbing that violate both sub-formulas or satisfy the second sub-formula.
|
|
tmpMatrix.makeRowsAbsorbing((~*leftStates & *rightStates) | *rightStates);
|
|
|
|
// Transform the transition probability matrix to the eigen format to use its arithmetic.
|
|
Eigen::SparseMatrix<Type, 1, int_fast32_t>* eigenMatrix = tmpMatrix.toEigenSparseMatrix();
|
|
|
|
// Create the vector with which to multiply.
|
|
uint_fast64_t stateCount = this->getModel().getNumberOfStates();
|
|
|
|
typedef Eigen::Matrix<Type, -1, 1, 0, -1, 1> VectorType;
|
|
typedef Eigen::Map<VectorType> MapType;
|
|
|
|
std::vector<Type>* result = new std::vector<Type>(stateCount);
|
|
|
|
// Dummy Type variable for const templates
|
|
Type dummy;
|
|
mrmc::utility::setVectorValues(result, *rightStates, mrmc::utility::constGetOne(dummy));
|
|
|
|
Type *p = &((*result)[0]); // get the address storing the data for result
|
|
MapType vectorMap(p, result->size()); // vectorMap shares data
|
|
|
|
|
|
// Now perform matrix-vector multiplication as long as we meet the bound of the formula.
|
|
for (uint_fast64_t i = 0, bound = formula.getBound(); i < bound; ++i) {
|
|
vectorMap = (*eigenMatrix) * vectorMap;
|
|
}
|
|
|
|
// Delete intermediate results.
|
|
delete leftStates;
|
|
delete rightStates;
|
|
delete eigenMatrix;
|
|
|
|
return result;
|
|
}
|
|
|
|
virtual std::vector<Type>* checkNext(const mrmc::formula::Next<Type>& formula) const {
|
|
// First, we need to compute the states that satisfy the sub-formula of the next-formula.
|
|
mrmc::storage::BitVector* nextStates = this->checkStateFormula(formula.getChild());
|
|
|
|
// Transform the transition probability matrix to the gmm++ format to use its arithmetic.
|
|
Eigen::SparseMatrix<Type, 1, int_fast32_t>* eigenMatrix = this->getModel().getTransitionProbabilityMatrix()->toEigenSparseMatrix();
|
|
|
|
// Create the vector with which to multiply and initialize it correctly.
|
|
std::vector<Type> x(this->getModel().getNumberOfStates());
|
|
Type dummy;
|
|
mrmc::utility::setVectorValues(&x, *nextStates, mrmc::utility::constGetOne(dummy));
|
|
|
|
// Delete not needed next states bit vector.
|
|
delete nextStates;
|
|
|
|
typedef Eigen::Matrix<Type, -1, 1, 0, -1, 1> VectorType;
|
|
typedef Eigen::Map<VectorType> MapType;
|
|
|
|
Type *px = &(x[0]); // get the address storing the data for x
|
|
MapType vectorX(px, x.size()); // vectorX shares data
|
|
|
|
// Create resulting vector.
|
|
std::vector<Type>* result = new std::vector<Type>(this->getModel().getNumberOfStates());
|
|
|
|
Type *pr = &((*result)[0]); // get the address storing the data for result
|
|
MapType vectorResult(px, result->size()); // vectorResult shares data
|
|
|
|
// Perform the actual computation.
|
|
vectorResult = (*eigenMatrix) * vectorX;
|
|
|
|
// Delete temporary matrix and return result.
|
|
delete eigenMatrix;
|
|
return result;
|
|
}
|
|
|
|
virtual std::vector<Type>* checkUntil(const mrmc::formula::Until<Type>& formula) const {
|
|
// First, we need to compute the states that satisfy the sub-formulas of the until-formula.
|
|
mrmc::storage::BitVector* leftStates = this->checkStateFormula(formula.getLeft());
|
|
mrmc::storage::BitVector* rightStates = this->checkStateFormula(formula.getRight());
|
|
|
|
// Then, we need to identify the states which have to be taken out of the matrix, i.e.
|
|
// all states that have probability 0 and 1 of satisfying the until-formula.
|
|
mrmc::storage::BitVector notExistsPhiUntilPsiStates(this->getModel().getNumberOfStates());
|
|
mrmc::storage::BitVector alwaysPhiUntilPsiStates(this->getModel().getNumberOfStates());
|
|
mrmc::solver::GraphAnalyzer::getPhiUntilPsiStates<double>(this->getModel(), *leftStates, *rightStates, ¬ExistsPhiUntilPsiStates, &alwaysPhiUntilPsiStates);
|
|
notExistsPhiUntilPsiStates.complement();
|
|
|
|
delete leftStates;
|
|
delete rightStates;
|
|
|
|
LOG4CPLUS_INFO(logger, "Found " << notExistsPhiUntilPsiStates.getNumberOfSetBits() << " 'no' states.");
|
|
LOG4CPLUS_INFO(logger, "Found " << alwaysPhiUntilPsiStates.getNumberOfSetBits() << " 'yes' states.");
|
|
mrmc::storage::BitVector maybeStates = ~(notExistsPhiUntilPsiStates | alwaysPhiUntilPsiStates);
|
|
LOG4CPLUS_INFO(logger, "Found " << maybeStates.getNumberOfSetBits() << " 'maybe' states.");
|
|
|
|
// Create resulting vector and set values accordingly.
|
|
uint_fast64_t stateCount = this->getModel().getNumberOfStates();
|
|
std::vector<Type>* result = new std::vector<Type>(stateCount);
|
|
|
|
// Only try to solve system if there are states for which the probability is unknown.
|
|
if (maybeStates.getNumberOfSetBits() > 0) {
|
|
typedef Eigen::Matrix<Type, -1, 1, 0, -1, 1> VectorType;
|
|
typedef Eigen::Map<VectorType> MapType;
|
|
|
|
// Now we can eliminate the rows and columns from the original transition probability matrix.
|
|
mrmc::storage::SquareSparseMatrix<double>* submatrix = this->getModel().getTransitionProbabilityMatrix()->getSubmatrix(maybeStates);
|
|
// Converting the matrix to the form needed for the equation system. That is, we go from
|
|
// x = A*x + b to (I-A)x = b.
|
|
submatrix->convertToEquationSystem();
|
|
|
|
// Transform the submatric matrix to the eigen format to use its solvers
|
|
Eigen::SparseMatrix<Type, 1, int_fast32_t>* eigenSubMatrix = submatrix->toEigenSparseMatrix();
|
|
|
|
// Initialize the x vector with 0.5 for each element. This is the initial guess for
|
|
// the iterative solvers. It should be safe as for all 'maybe' states we know that the
|
|
// probability is strictly larger than 0.
|
|
std::vector<Type> x(maybeStates.getNumberOfSetBits(), Type(0.5));
|
|
|
|
// Map for x
|
|
Type *px = &(x[0]); // get the address storing the data for x
|
|
MapType vectorX(px, x.size()); // vectorX shares data
|
|
|
|
|
|
// Prepare the right-hand side of the equation system. For entry i this corresponds to
|
|
// the accumulated probability of going from state i to some 'yes' state.
|
|
std::vector<double> b(maybeStates.getNumberOfSetBits());
|
|
|
|
Type *pb = &(b[0]); // get the address storing the data for b
|
|
MapType vectorB(pb, b.size()); // vectorB shares data
|
|
|
|
this->getModel().getTransitionProbabilityMatrix()->getConstrainedRowCountVector(maybeStates, alwaysPhiUntilPsiStates, &x);
|
|
|
|
Eigen::BiCGSTAB<Eigen::SparseMatrix<Type, 1, int_fast32_t>> solver;
|
|
solver.compute(*eigenSubMatrix);
|
|
if(solver.info()!= Eigen::ComputationInfo::Success) {
|
|
// decomposition failed
|
|
LOG4CPLUS_ERROR(logger, "Decomposition of Submatrix failed!");
|
|
}
|
|
|
|
// Now do the actual solving.
|
|
LOG4CPLUS_INFO(logger, "Starting iterative solver.");
|
|
|
|
solver.setTolerance(0.000001);
|
|
|
|
bool hasConverged = false;
|
|
int turns = 6;
|
|
while (!hasConverged) {
|
|
vectorX = solver.solve(vectorB);
|
|
hasConverged = (solver.info() != Eigen::ComputationInfo::NoConvergence) || (turns <= 0);
|
|
if (!hasConverged) {
|
|
LOG4CPLUS_INFO(logger, "EigenDtmcPrctlModelChecker did not converge with " << solver.iterations() << " of max. " << solver.maxIterations() << "Iterations, restarting ");
|
|
solver.setMaxIterations(solver.maxIterations() * 2);
|
|
}
|
|
--turns;
|
|
}
|
|
|
|
if(solver.info() == Eigen::ComputationInfo::InvalidInput) {
|
|
// solving failed
|
|
LOG4CPLUS_ERROR(logger, "Solving of Submatrix failed: InvalidInput");
|
|
} else if(solver.info() == Eigen::ComputationInfo::NoConvergence) {
|
|
// NoConvergence
|
|
throw mrmc::exceptions::NoConvergence("Solving of Submatrix with Eigen failed", solver.iterations(), solver.maxIterations());
|
|
} else if(solver.info() == Eigen::ComputationInfo::NumericalIssue) {
|
|
// NumericalIssue
|
|
LOG4CPLUS_ERROR(logger, "Solving of Submatrix failed: NumericalIssue");
|
|
} else if(solver.info() == Eigen::ComputationInfo::Success) {
|
|
// solving Success
|
|
LOG4CPLUS_INFO(logger, "Solving of Submatrix succeeded: Success");
|
|
}
|
|
|
|
// Set values of resulting vector according to result.
|
|
mrmc::utility::setVectorValues<Type>(result, maybeStates, x);
|
|
|
|
// Delete temporary matrix.
|
|
delete eigenSubMatrix;
|
|
}
|
|
|
|
// Dummy Type variable for const templates
|
|
Type dummy;
|
|
mrmc::utility::setVectorValues<Type>(result, notExistsPhiUntilPsiStates, mrmc::utility::constGetZero(dummy));
|
|
mrmc::utility::setVectorValues<Type>(result, alwaysPhiUntilPsiStates, mrmc::utility::constGetOne(dummy));
|
|
|
|
return result;
|
|
}
|
|
};
|
|
|
|
} //namespace modelChecker
|
|
|
|
} //namespace mrmc
|
|
|
|
#endif /* EIGENDTMCPRCTLMODELCHECKER_H_ */
|