You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
522 lines
24 KiB
522 lines
24 KiB
/*
|
|
* GmmxxDtmcPrctlModelChecker.h
|
|
*
|
|
* Created on: 06.12.2012
|
|
* Author: Christian Dehnert
|
|
*/
|
|
|
|
#ifndef STORM_MODELCHECKER_GMMXXDTMCPRCTLMODELCHECKER_H_
|
|
#define STORM_MODELCHECKER_GMMXXDTMCPRCTLMODELCHECKER_H_
|
|
|
|
#include <cmath>
|
|
|
|
#include "src/models/Dtmc.h"
|
|
#include "src/modelchecker/DtmcPrctlModelChecker.h"
|
|
#include "src/utility/GraphAnalyzer.h"
|
|
#include "src/utility/Vector.h"
|
|
#include "src/utility/ConstTemplates.h"
|
|
#include "src/utility/Settings.h"
|
|
#include "src/adapters/GmmxxAdapter.h"
|
|
#include "src/exceptions/InvalidPropertyException.h"
|
|
#include "src/storage/JacobiDecomposition.h"
|
|
|
|
#include "gmm/gmm_matrix.h"
|
|
#include "gmm/gmm_iter_solvers.h"
|
|
|
|
#include "log4cplus/logger.h"
|
|
#include "log4cplus/loggingmacros.h"
|
|
|
|
extern log4cplus::Logger logger;
|
|
|
|
namespace storm {
|
|
|
|
namespace modelChecker {
|
|
|
|
/*
|
|
* A model checking engine that makes use of the gmm++ backend.
|
|
*/
|
|
template <class Type>
|
|
class GmmxxDtmcPrctlModelChecker
|
|
: public DtmcPrctlModelChecker<Type> {
|
|
|
|
public:
|
|
explicit GmmxxDtmcPrctlModelChecker(storm::models::Dtmc<Type>& dtmc)
|
|
: DtmcPrctlModelChecker<Type>(dtmc) {
|
|
// Intentionally left empty.
|
|
}
|
|
|
|
virtual ~GmmxxDtmcPrctlModelChecker() { }
|
|
|
|
virtual std::vector<Type>* checkBoundedUntil(const storm::formula::BoundedUntil<Type>& formula, bool qualitative) const {
|
|
// First, we need to compute the states that satisfy the sub-formulas of the until-formula.
|
|
storm::storage::BitVector* leftStates = formula.getLeft().check(*this);
|
|
storm::storage::BitVector* rightStates = formula.getRight().check(*this);
|
|
|
|
// Copy the matrix before we make any changes.
|
|
storm::storage::SparseMatrix<Type> tmpMatrix(*this->getModel().getTransitionMatrix());
|
|
|
|
// Make all rows absorbing that violate both sub-formulas or satisfy the second sub-formula.
|
|
tmpMatrix.makeRowsAbsorbing(~(*leftStates | *rightStates) | *rightStates);
|
|
|
|
// Transform the transition probability matrix to the gmm++ format to use its arithmetic.
|
|
gmm::csr_matrix<Type>* gmmxxMatrix = storm::adapters::GmmxxAdapter::toGmmxxSparseMatrix<Type>(tmpMatrix);
|
|
|
|
// Create the vector with which to multiply.
|
|
std::vector<Type>* result = new std::vector<Type>(this->getModel().getNumberOfStates());
|
|
storm::utility::setVectorValues(result, *rightStates, storm::utility::constGetOne<Type>());
|
|
|
|
// Now perform matrix-vector multiplication as long as we meet the bound of the formula.
|
|
std::vector<Type>* swap = nullptr;
|
|
std::vector<Type>* tmpResult = new std::vector<Type>(this->getModel().getNumberOfStates());
|
|
for (uint_fast64_t i = 0; i < formula.getBound(); ++i) {
|
|
gmm::mult(*gmmxxMatrix, *result, *tmpResult);
|
|
swap = tmpResult;
|
|
tmpResult = result;
|
|
result = swap;
|
|
}
|
|
delete tmpResult;
|
|
|
|
// Delete intermediate results and return result.
|
|
delete gmmxxMatrix;
|
|
delete leftStates;
|
|
delete rightStates;
|
|
return result;
|
|
}
|
|
|
|
virtual std::vector<Type>* checkNext(const storm::formula::Next<Type>& formula, bool qualitative) const {
|
|
// First, we need to compute the states that satisfy the sub-formula of the next-formula.
|
|
storm::storage::BitVector* nextStates = formula.getChild().check(*this);
|
|
|
|
// Transform the transition probability matrix to the gmm++ format to use its arithmetic.
|
|
gmm::csr_matrix<Type>* gmmxxMatrix = storm::adapters::GmmxxAdapter::toGmmxxSparseMatrix<Type>(*this->getModel().getTransitionMatrix());
|
|
|
|
// Create the vector with which to multiply and initialize it correctly.
|
|
std::vector<Type> x(this->getModel().getNumberOfStates());
|
|
storm::utility::setVectorValues(&x, *nextStates, storm::utility::constGetOne<Type>());
|
|
|
|
// Delete obsolete sub-result.
|
|
delete nextStates;
|
|
|
|
// Create resulting vector.
|
|
std::vector<Type>* result = new std::vector<Type>(this->getModel().getNumberOfStates());
|
|
|
|
// Perform the actual computation, namely matrix-vector multiplication.
|
|
gmm::mult(*gmmxxMatrix, x, *result);
|
|
|
|
// Delete temporary matrix and return result.
|
|
delete gmmxxMatrix;
|
|
return result;
|
|
}
|
|
|
|
virtual std::vector<Type>* checkUntil(const storm::formula::Until<Type>& formula, bool qualitative) const {
|
|
// First, we need to compute the states that satisfy the sub-formulas of the until-formula.
|
|
storm::storage::BitVector* leftStates = formula.getLeft().check(*this);
|
|
storm::storage::BitVector* rightStates = formula.getRight().check(*this);
|
|
|
|
// Then, we need to identify the states which have to be taken out of the matrix, i.e.
|
|
// all states that have probability 0 and 1 of satisfying the until-formula.
|
|
storm::storage::BitVector statesWithProbability0(this->getModel().getNumberOfStates());
|
|
storm::storage::BitVector statesWithProbability1(this->getModel().getNumberOfStates());
|
|
storm::utility::GraphAnalyzer::performProb01(this->getModel(), *leftStates, *rightStates, &statesWithProbability0, &statesWithProbability1);
|
|
|
|
// Delete sub-results that are obsolete now.
|
|
delete leftStates;
|
|
delete rightStates;
|
|
|
|
LOG4CPLUS_INFO(logger, "Found " << statesWithProbability0.getNumberOfSetBits() << " 'no' states.");
|
|
LOG4CPLUS_INFO(logger, "Found " << statesWithProbability1.getNumberOfSetBits() << " 'yes' states.");
|
|
storm::storage::BitVector maybeStates = ~(statesWithProbability0 | statesWithProbability1);
|
|
LOG4CPLUS_INFO(logger, "Found " << maybeStates.getNumberOfSetBits() << " 'maybe' states.");
|
|
|
|
// Create resulting vector.
|
|
std::vector<Type>* result = new std::vector<Type>(this->getModel().getNumberOfStates());
|
|
|
|
// Only try to solve system if there are states for which the probability is unknown.
|
|
uint_fast64_t mayBeStatesSetBitCount = maybeStates.getNumberOfSetBits();
|
|
if (mayBeStatesSetBitCount > 0 && !qualitative) {
|
|
// Now we can eliminate the rows and columns from the original transition probability matrix.
|
|
storm::storage::SparseMatrix<Type>* submatrix = this->getModel().getTransitionMatrix()->getSubmatrix(maybeStates);
|
|
// Converting the matrix from the fixpoint notation to the form needed for the equation
|
|
// system. That is, we go from x = A*x + b to (I-A)x = b.
|
|
submatrix->convertToEquationSystem();
|
|
|
|
// Transform the submatrix to the gmm++ format to use its solvers.
|
|
gmm::csr_matrix<Type>* gmmxxMatrix = storm::adapters::GmmxxAdapter::toGmmxxSparseMatrix<Type>(*submatrix);
|
|
delete submatrix;
|
|
|
|
// Initialize the x vector with 0.5 for each element. This is the initial guess for
|
|
// the iterative solvers. It should be safe as for all 'maybe' states we know that the
|
|
// probability is strictly larger than 0.
|
|
std::vector<Type> x(mayBeStatesSetBitCount, Type(0.5));
|
|
|
|
// Prepare the right-hand side of the equation system. For entry i this corresponds to
|
|
// the accumulated probability of going from state i to some 'yes' state.
|
|
std::vector<Type> b(mayBeStatesSetBitCount);
|
|
this->getModel().getTransitionMatrix()->getConstrainedRowSumVector(maybeStates, statesWithProbability1, &b);
|
|
|
|
// Solve the corresponding system of linear equations.
|
|
this->solveLinearEquationSystem(*gmmxxMatrix, x, b);
|
|
|
|
// Set values of resulting vector according to result.
|
|
storm::utility::setVectorValues<Type>(result, maybeStates, x);
|
|
|
|
// Delete temporary matrix.
|
|
delete gmmxxMatrix;
|
|
} else if (qualitative) {
|
|
// If we only need a qualitative result, we can safely assume that the results will only be compared to
|
|
// bounds which are either 0 or 1. Setting the value to 0.5 is thus safe.
|
|
storm::utility::setVectorValues<Type>(result, maybeStates, Type(0.5));
|
|
}
|
|
|
|
// Set values of resulting vector that are known exactly.
|
|
storm::utility::setVectorValues<Type>(result, statesWithProbability0, storm::utility::constGetZero<Type>());
|
|
storm::utility::setVectorValues<Type>(result, statesWithProbability1, storm::utility::constGetOne<Type>());
|
|
|
|
return result;
|
|
}
|
|
|
|
virtual std::vector<Type>* checkInstantaneousReward(const storm::formula::InstantaneousReward<Type>& formula, bool qualitative) const {
|
|
// Only compute the result if the model has a state-based reward model.
|
|
if (!this->getModel().hasStateRewards()) {
|
|
LOG4CPLUS_ERROR(logger, "Missing (state-based) reward model for formula.");
|
|
throw storm::exceptions::InvalidPropertyException() << "Missing (state-based) reward model for formula.";
|
|
}
|
|
|
|
// Transform the transition probability matrix to the gmm++ format to use its arithmetic.
|
|
gmm::csr_matrix<Type>* gmmxxMatrix = storm::adapters::GmmxxAdapter::toGmmxxSparseMatrix<Type>(*this->getModel().getTransitionMatrix());
|
|
|
|
// Initialize result to state rewards of the model.
|
|
std::vector<Type>* result = new std::vector<Type>(*this->getModel().getStateRewardVector());
|
|
|
|
// Now perform matrix-vector multiplication as long as we meet the bound of the formula.
|
|
std::vector<Type>* swap = nullptr;
|
|
std::vector<Type>* tmpResult = new std::vector<Type>(this->getModel().getNumberOfStates());
|
|
for (uint_fast64_t i = 0; i < formula.getBound(); ++i) {
|
|
gmm::mult(*gmmxxMatrix, *result, *tmpResult);
|
|
swap = tmpResult;
|
|
tmpResult = result;
|
|
result = swap;
|
|
}
|
|
|
|
// Delete temporary variables and return result.
|
|
delete tmpResult;
|
|
delete gmmxxMatrix;
|
|
return result;
|
|
}
|
|
|
|
virtual std::vector<Type>* checkCumulativeReward(const storm::formula::CumulativeReward<Type>& formula, bool qualitative) const {
|
|
// Only compute the result if the model has at least one reward model.
|
|
if (!this->getModel().hasStateRewards() && !this->getModel().hasTransitionRewards()) {
|
|
LOG4CPLUS_ERROR(logger, "Missing reward model for formula.");
|
|
throw storm::exceptions::InvalidPropertyException() << "Missing reward model for formula.";
|
|
}
|
|
|
|
// Transform the transition probability matrix to the gmm++ format to use its arithmetic.
|
|
gmm::csr_matrix<Type>* gmmxxMatrix = storm::adapters::GmmxxAdapter::toGmmxxSparseMatrix<Type>(*this->getModel().getTransitionMatrix());
|
|
|
|
// Compute the reward vector to add in each step based on the available reward models.
|
|
std::vector<Type>* totalRewardVector = nullptr;
|
|
if (this->getModel().hasTransitionRewards()) {
|
|
totalRewardVector = this->getModel().getTransitionMatrix()->getPointwiseProductRowSumVector(*this->getModel().getTransitionRewardMatrix());
|
|
if (this->getModel().hasStateRewards()) {
|
|
gmm::add(*this->getModel().getStateRewardVector(), *totalRewardVector);
|
|
}
|
|
} else {
|
|
totalRewardVector = new std::vector<Type>(*this->getModel().getStateRewardVector());
|
|
}
|
|
|
|
std::vector<Type>* result = new std::vector<Type>(this->getModel().getNumberOfStates());
|
|
|
|
// Now perform matrix-vector multiplication as long as we meet the bound of the formula.
|
|
std::vector<Type>* swap = nullptr;
|
|
std::vector<Type>* tmpResult = new std::vector<Type>(this->getModel().getNumberOfStates());
|
|
for (uint_fast64_t i = 0; i < formula.getBound(); ++i) {
|
|
gmm::mult(*gmmxxMatrix, *result, *tmpResult);
|
|
swap = tmpResult;
|
|
tmpResult = result;
|
|
result = swap;
|
|
|
|
// Add the reward vector to the result.
|
|
gmm::add(*totalRewardVector, *result);
|
|
}
|
|
|
|
// Delete temporary variables and return result.
|
|
delete tmpResult;
|
|
delete gmmxxMatrix;
|
|
delete totalRewardVector;
|
|
return result;
|
|
}
|
|
|
|
virtual std::vector<Type>* checkReachabilityReward(const storm::formula::ReachabilityReward<Type>& formula, bool qualitative) const {
|
|
// Only compute the result if the model has at least one reward model.
|
|
if (!this->getModel().hasStateRewards() && !this->getModel().hasTransitionRewards()) {
|
|
LOG4CPLUS_ERROR(logger, "Missing reward model for formula. Skipping formula");
|
|
throw storm::exceptions::InvalidPropertyException() << "Missing reward model for formula.";
|
|
}
|
|
|
|
// Determine the states for which the target predicate holds.
|
|
storm::storage::BitVector* targetStates = formula.getChild().check(*this);
|
|
|
|
// Determine which states have a reward of infinity by definition.
|
|
storm::storage::BitVector infinityStates(this->getModel().getNumberOfStates());
|
|
storm::storage::BitVector trueStates(this->getModel().getNumberOfStates(), true);
|
|
storm::utility::GraphAnalyzer::performProb1(this->getModel(), trueStates, *targetStates, &infinityStates);
|
|
infinityStates.complement();
|
|
|
|
// Create resulting vector.
|
|
std::vector<Type>* result = new std::vector<Type>(this->getModel().getNumberOfStates());
|
|
|
|
// Check whether there are states for which we have to compute the result.
|
|
storm::storage::BitVector maybeStates = ~(*targetStates) & ~infinityStates;
|
|
const int maybeStatesSetBitCount = maybeStates.getNumberOfSetBits();
|
|
if (maybeStatesSetBitCount > 0) {
|
|
// Now we can eliminate the rows and columns from the original transition probability matrix.
|
|
storm::storage::SparseMatrix<Type>* submatrix = this->getModel().getTransitionMatrix()->getSubmatrix(maybeStates);
|
|
// Converting the matrix from the fixpoint notation to the form needed for the equation
|
|
// system. That is, we go from x = A*x + b to (I-A)x = b.
|
|
submatrix->convertToEquationSystem();
|
|
|
|
// Transform the submatrix to the gmm++ format to use its solvers.
|
|
gmm::csr_matrix<Type>* gmmxxMatrix = storm::adapters::GmmxxAdapter::toGmmxxSparseMatrix<Type>(*submatrix);
|
|
delete submatrix;
|
|
|
|
// Initialize the x vector with 1 for each element. This is the initial guess for
|
|
// the iterative solvers.
|
|
std::vector<Type> x(maybeStatesSetBitCount, storm::utility::constGetOne<Type>());
|
|
|
|
// Prepare the right-hand side of the equation system.
|
|
std::vector<Type>* b = new std::vector<Type>(maybeStatesSetBitCount);
|
|
if (this->getModel().hasTransitionRewards()) {
|
|
// If a transition-based reward model is available, we initialize the right-hand
|
|
// side to the vector resulting from summing the rows of the pointwise product
|
|
// of the transition probability matrix and the transition reward matrix.
|
|
std::vector<Type>* pointwiseProductRowSumVector = this->getModel().getTransitionMatrix()->getPointwiseProductRowSumVector(*this->getModel().getTransitionRewardMatrix());
|
|
storm::utility::selectVectorValues(b, maybeStates, *pointwiseProductRowSumVector);
|
|
delete pointwiseProductRowSumVector;
|
|
|
|
if (this->getModel().hasStateRewards()) {
|
|
// If a state-based reward model is also available, we need to add this vector
|
|
// as well. As the state reward vector contains entries not just for the states
|
|
// that we still consider (i.e. maybeStates), we need to extract these values
|
|
// first.
|
|
std::vector<Type>* subStateRewards = new std::vector<Type>(maybeStatesSetBitCount);
|
|
storm::utility::setVectorValues(subStateRewards, maybeStates, *this->getModel().getStateRewardVector());
|
|
gmm::add(*subStateRewards, *b);
|
|
delete subStateRewards;
|
|
}
|
|
} else {
|
|
// If only a state-based reward model is available, we take this vector as the
|
|
// right-hand side. As the state reward vector contains entries not just for the
|
|
// states that we still consider (i.e. maybeStates), we need to extract these values
|
|
// first.
|
|
storm::utility::setVectorValues(b, maybeStates, *this->getModel().getStateRewardVector());
|
|
}
|
|
|
|
// Solve the corresponding system of linear equations.
|
|
this->solveLinearEquationSystem(*gmmxxMatrix, x, *b);
|
|
|
|
// Set values of resulting vector according to result.
|
|
storm::utility::setVectorValues<Type>(result, maybeStates, x);
|
|
|
|
// Delete temporary matrix and right-hand side.
|
|
delete gmmxxMatrix;
|
|
delete b;
|
|
}
|
|
|
|
// Set values of resulting vector that are known exactly.
|
|
storm::utility::setVectorValues(result, *targetStates, storm::utility::constGetZero<Type>());
|
|
storm::utility::setVectorValues(result, infinityStates, storm::utility::constGetInfinity<Type>());
|
|
|
|
// Delete temporary storages and return result.
|
|
delete targetStates;
|
|
return result;
|
|
}
|
|
|
|
/*!
|
|
* Returns the name of this module.
|
|
* @return The name of this module.
|
|
*/
|
|
static std::string getModuleName() {
|
|
return "gmm++det";
|
|
}
|
|
|
|
/*!
|
|
* Returns a trigger such that if the option "matrixlib" is set to "gmm++", this model checker
|
|
* is to be used.
|
|
* @return An option trigger for this module.
|
|
*/
|
|
static std::pair<std::string, std::string> getOptionTrigger() {
|
|
return std::pair<std::string, std::string>("matrixlib", "gmm++");
|
|
}
|
|
|
|
/*!
|
|
* Registers all options associated with the gmm++ matrix library.
|
|
*/
|
|
static void putOptions(boost::program_options::options_description* desc) {
|
|
desc->add_options()("lemethod", boost::program_options::value<std::string>()->default_value("bicgstab")->notifier(&validateLeMethod), "Sets the method used for linear equation solving. Must be in {bicgstab, qmr}.");
|
|
desc->add_options()("maxiter", boost::program_options::value<unsigned>()->default_value(10000), "Sets the maximal number of iterations for iterative equation solving.");
|
|
desc->add_options()("precision", boost::program_options::value<double>()->default_value(1e-6), "Sets the precision for iterative equation solving.");
|
|
desc->add_options()("precond", boost::program_options::value<std::string>()->default_value("ilu")->notifier(&validatePreconditioner), "Sets the preconditioning technique for linear equation solving. Must be in {ilu, diagonal, ildlt, none}.");
|
|
desc->add_options()("relative", boost::program_options::value<bool>()->default_value(true), "Sets whether the relative or absolute error is considered for detecting convergence.");
|
|
}
|
|
|
|
/*!
|
|
* Validates whether the given lemethod matches one of the available ones.
|
|
* Throws an exception of type InvalidSettings in case the selected method is illegal.
|
|
*/
|
|
static void validateLeMethod(const std::string& lemethod) {
|
|
if ((lemethod != "bicgstab") && (lemethod != "qmr")) {
|
|
throw exceptions::InvalidSettingsException() << "Argument " << lemethod << " for option 'lemethod' is invalid.";
|
|
}
|
|
}
|
|
|
|
/*!
|
|
* Validates whether the given preconditioner matches one of the available ones.
|
|
* Throws an exception of type InvalidSettings in case the selected preconditioner is illegal.
|
|
*/
|
|
static void validatePreconditioner(const std::string& preconditioner) {
|
|
if ((preconditioner != "ilu") && (preconditioner != "diagonal") && (preconditioner != "ildlt") && (preconditioner != "none")) {
|
|
throw exceptions::InvalidSettingsException() << "Argument " << preconditioner << " for option 'precond' is invalid.";
|
|
}
|
|
}
|
|
|
|
private:
|
|
/*!
|
|
* Solves the linear equation system Ax=b with the given parameters.
|
|
*
|
|
* @param A The matrix A specifying the coefficients of the linear equations.
|
|
* @param x The vector x for which to solve the equations. The initial value of the elements of
|
|
* this vector are used as the initial guess and might thus influence performance and convergence.
|
|
* @param b The vector b specifying the values on the right-hand-sides of the equations.
|
|
* @return The solution of the system of linear equations in form of the elements of the vector
|
|
* x.
|
|
*/
|
|
void solveLinearEquationSystem(gmm::csr_matrix<Type> const& A, std::vector<Type>& x, std::vector<Type> const& b) const {
|
|
// Get the settings object to customize linear solving.
|
|
storm::settings::Settings* s = storm::settings::instance();
|
|
|
|
// Prepare an iteration object that determines the accuracy, maximum number of iterations
|
|
// and the like.
|
|
gmm::iteration iter(s->get<double>("precision"), 0, s->get<unsigned>("maxiter"));
|
|
|
|
// Now do the actual solving.
|
|
LOG4CPLUS_INFO(logger, "Starting iterative solver.");
|
|
const std::string& precond = s->getString("precond");
|
|
if (precond == "ilu") {
|
|
LOG4CPLUS_INFO(logger, "Using ILU preconditioner.");
|
|
} else if (precond == "diagonal") {
|
|
LOG4CPLUS_INFO(logger, "Using diagonal preconditioner.");
|
|
} else if (precond == "ildlt") {
|
|
LOG4CPLUS_INFO(logger, "Using ILDLT preconditioner.");
|
|
} else if (precond == "none") {
|
|
LOG4CPLUS_INFO(logger, "Using no preconditioner.");
|
|
}
|
|
|
|
if (s->getString("lemethod") == "bicgstab") {
|
|
LOG4CPLUS_INFO(logger, "Using BiCGStab method.");
|
|
if (precond == "ilu") {
|
|
gmm::bicgstab(A, x, b, gmm::ilu_precond<gmm::csr_matrix<Type>>(A), iter);
|
|
} else if (precond == "diagonal") {
|
|
gmm::bicgstab(A, x, b, gmm::diagonal_precond<gmm::csr_matrix<Type>>(A), iter);
|
|
} else if (precond == "ildlt") {
|
|
gmm::bicgstab(A, x, b, gmm::ildlt_precond<gmm::csr_matrix<Type>>(A), iter);
|
|
} else if (precond == "none") {
|
|
gmm::bicgstab(A, x, b, gmm::identity_matrix(), iter);
|
|
}
|
|
// FIXME: gmres has been disabled, because it triggers gmm++ compilation errors
|
|
/* } else if (s->getString("lemethod").compare("gmres") == 0) {
|
|
LOG4CPLUS_INFO(logger, "Using GMRES method.");
|
|
if (precond.compare("ilu")) {
|
|
gmm::gmres(A, x, b, gmm::ilu_precond<gmm::csr_matrix<Type>>(A), s->get<unsigned>("restart"), iter);
|
|
} else if (precond == "diagonal") {
|
|
gmm::gmres(A, x, b, gmm::diagonal_precond<gmm::csr_matrix<Type>>(A), s->get<unsigned>("restart"), iter);
|
|
} else if (precond == "ildlt") {
|
|
gmm::gmres(A, x, b, gmm::ildlt_precond<gmm::csr_matrix<Type>>(A), s->get<unsigned>("restart"), iter);
|
|
} else if (precond == "none") {
|
|
gmm::gmres(A, x, b, gmm::identity_matrix(), s->get<unsigned>("restart"), iter);
|
|
} */
|
|
} else if (s->getString("lemethod") == "qmr") {
|
|
LOG4CPLUS_INFO(logger, "Using QMR method.");
|
|
if (precond == "ilu") {
|
|
gmm::qmr(A, x, b, gmm::ilu_precond<gmm::csr_matrix<Type>>(A), iter);
|
|
} else if (precond == "diagonal") {
|
|
gmm::qmr(A, x, b, gmm::diagonal_precond<gmm::csr_matrix<Type>>(A), iter);
|
|
} else if (precond == "ildlt") {
|
|
gmm::qmr(A, x, b, gmm::ildlt_precond<gmm::csr_matrix<Type>>(A), iter);
|
|
} else if (precond == "none") {
|
|
gmm::qmr(A, x, b, gmm::identity_matrix(), iter);
|
|
}
|
|
}
|
|
|
|
// Check if the solver converged and issue a warning otherwise.
|
|
if (iter.converged()) {
|
|
LOG4CPLUS_INFO(logger, "Iterative solver converged after " << iter.get_iteration() << " iterations.");
|
|
} else {
|
|
LOG4CPLUS_WARN(logger, "Iterative solver did not converge.");
|
|
}
|
|
}
|
|
|
|
/*!
|
|
* Solves the linear equation system Ax=b with the given parameters
|
|
* using the Jacobi Method and therefor the Jacobi Decomposition of A.
|
|
*
|
|
* @param A The matrix A specifying the coefficients of the linear equations.
|
|
* @param x The vector x for which to solve the equations. The initial value of the elements of
|
|
* this vector are used as the initial guess and might thus influence performance and convergence.
|
|
* @param b The vector b specifying the values on the right-hand-sides of the equations.
|
|
* @return The solution of the system of linear equations in form of the elements of the vector
|
|
* x.
|
|
*/
|
|
void solveLinearEquationSystemWithJacobi(storm::storage::SparseMatrix<Type> const& A, std::vector<Type>& x, std::vector<Type> const& b) const {
|
|
// Get the settings object to customize linear solving.
|
|
storm::settings::Settings* s = storm::settings::instance();
|
|
|
|
double precision = s->get<double>("precision");
|
|
if (precision <= 0) {
|
|
LOG4CPLUS_ERROR(logger, "Selected precision for linear equation solving must be strictly greater than zero for Jacobi method.");
|
|
}
|
|
|
|
// Get a Jacobi Decomposition of the Input Matrix A
|
|
storm::storage::JacobiDecomposition<Type>* jacobiDecomposition = A.getJacobiDecomposition();
|
|
|
|
// Convert the Diagonal matrix to GMM format
|
|
gmm::csr_matrix<Type>* gmmxxDiagonalInverted = storm::adapters::GmmxxAdapter::toGmmxxSparseMatrix<Type>(jacobiDecomposition->getJacobiDInv());
|
|
// Convert the LU Matrix to GMM format
|
|
gmm::csr_matrix<Type>* gmmxxLU = storm::adapters::GmmxxAdapter::toGmmxxSparseMatrix<Type>(jacobiDecomposition->getJacobiLU());
|
|
|
|
delete jacobiDecomposition;
|
|
|
|
LOG4CPLUS_INFO(logger, "Starting iterative Jacobi Solver.");
|
|
|
|
// x_(k + 1) = D^-1 * (b - R * x_k)
|
|
std::vector<Type>* xNext = new std::vector<Type>(x.size());
|
|
const std::vector<Type>* xCopy = xNext;
|
|
std::vector<Type>* xCurrent = &x;
|
|
|
|
uint_fast64_t iterationCount = 0;
|
|
do {
|
|
// R * x_k -> xCurrent
|
|
gmm::mult(*gmmxxLU, *xCurrent, *xNext);
|
|
// b - R * x_k
|
|
gmm::add(b, gmm::scaled(*xNext, -1.0), *xNext);
|
|
// D^-1 * (b - R * x_k)
|
|
gmm::mult(*gmmxxDiagonalInverted, *xNext, *xNext);
|
|
|
|
std::vector<Type>* swap = xNext;
|
|
xNext = xCurrent;
|
|
xCurrent = swap;
|
|
|
|
++iterationCount;
|
|
} while (gmm::vect_norminf(*xCurrent) > precision);
|
|
|
|
delete xCopy;
|
|
|
|
LOG4CPLUS_INFO(logger, "Iterative solver converged after " << iterationCount << " iterations.");
|
|
}
|
|
};
|
|
|
|
} //namespace modelChecker
|
|
|
|
} //namespace storm
|
|
|
|
#endif /* STORM_MODELCHECKER_GMMXXDTMCPRCTLMODELCHECKER_H_ */
|