You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							329 lines
						
					
					
						
							11 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							329 lines
						
					
					
						
							11 KiB
						
					
					
				
								      SUBROUTINE ZTPMV(UPLO,TRANS,DIAG,N,AP,X,INCX)
							 | 
						|
								*     .. Scalar Arguments ..
							 | 
						|
								      INTEGER INCX,N
							 | 
						|
								      CHARACTER DIAG,TRANS,UPLO
							 | 
						|
								*     ..
							 | 
						|
								*     .. Array Arguments ..
							 | 
						|
								      DOUBLE COMPLEX AP(*),X(*)
							 | 
						|
								*     ..
							 | 
						|
								*
							 | 
						|
								*  Purpose
							 | 
						|
								*  =======
							 | 
						|
								*
							 | 
						|
								*  ZTPMV  performs one of the matrix-vector operations
							 | 
						|
								*
							 | 
						|
								*     x := A*x,   or   x := A'*x,   or   x := conjg( A' )*x,
							 | 
						|
								*
							 | 
						|
								*  where x is an n element vector and  A is an n by n unit, or non-unit,
							 | 
						|
								*  upper or lower triangular matrix, supplied in packed form.
							 | 
						|
								*
							 | 
						|
								*  Arguments
							 | 
						|
								*  ==========
							 | 
						|
								*
							 | 
						|
								*  UPLO   - CHARACTER*1.
							 | 
						|
								*           On entry, UPLO specifies whether the matrix is an upper or
							 | 
						|
								*           lower triangular matrix as follows:
							 | 
						|
								*
							 | 
						|
								*              UPLO = 'U' or 'u'   A is an upper triangular matrix.
							 | 
						|
								*
							 | 
						|
								*              UPLO = 'L' or 'l'   A is a lower triangular matrix.
							 | 
						|
								*
							 | 
						|
								*           Unchanged on exit.
							 | 
						|
								*
							 | 
						|
								*  TRANS  - CHARACTER*1.
							 | 
						|
								*           On entry, TRANS specifies the operation to be performed as
							 | 
						|
								*           follows:
							 | 
						|
								*
							 | 
						|
								*              TRANS = 'N' or 'n'   x := A*x.
							 | 
						|
								*
							 | 
						|
								*              TRANS = 'T' or 't'   x := A'*x.
							 | 
						|
								*
							 | 
						|
								*              TRANS = 'C' or 'c'   x := conjg( A' )*x.
							 | 
						|
								*
							 | 
						|
								*           Unchanged on exit.
							 | 
						|
								*
							 | 
						|
								*  DIAG   - CHARACTER*1.
							 | 
						|
								*           On entry, DIAG specifies whether or not A is unit
							 | 
						|
								*           triangular as follows:
							 | 
						|
								*
							 | 
						|
								*              DIAG = 'U' or 'u'   A is assumed to be unit triangular.
							 | 
						|
								*
							 | 
						|
								*              DIAG = 'N' or 'n'   A is not assumed to be unit
							 | 
						|
								*                                  triangular.
							 | 
						|
								*
							 | 
						|
								*           Unchanged on exit.
							 | 
						|
								*
							 | 
						|
								*  N      - INTEGER.
							 | 
						|
								*           On entry, N specifies the order of the matrix A.
							 | 
						|
								*           N must be at least zero.
							 | 
						|
								*           Unchanged on exit.
							 | 
						|
								*
							 | 
						|
								*  AP     - COMPLEX*16       array of DIMENSION at least
							 | 
						|
								*           ( ( n*( n + 1 ) )/2 ).
							 | 
						|
								*           Before entry with  UPLO = 'U' or 'u', the array AP must
							 | 
						|
								*           contain the upper triangular matrix packed sequentially,
							 | 
						|
								*           column by column, so that AP( 1 ) contains a( 1, 1 ),
							 | 
						|
								*           AP( 2 ) and AP( 3 ) contain a( 1, 2 ) and a( 2, 2 )
							 | 
						|
								*           respectively, and so on.
							 | 
						|
								*           Before entry with UPLO = 'L' or 'l', the array AP must
							 | 
						|
								*           contain the lower triangular matrix packed sequentially,
							 | 
						|
								*           column by column, so that AP( 1 ) contains a( 1, 1 ),
							 | 
						|
								*           AP( 2 ) and AP( 3 ) contain a( 2, 1 ) and a( 3, 1 )
							 | 
						|
								*           respectively, and so on.
							 | 
						|
								*           Note that when  DIAG = 'U' or 'u', the diagonal elements of
							 | 
						|
								*           A are not referenced, but are assumed to be unity.
							 | 
						|
								*           Unchanged on exit.
							 | 
						|
								*
							 | 
						|
								*  X      - COMPLEX*16       array of dimension at least
							 | 
						|
								*           ( 1 + ( n - 1 )*abs( INCX ) ).
							 | 
						|
								*           Before entry, the incremented array X must contain the n
							 | 
						|
								*           element vector x. On exit, X is overwritten with the
							 | 
						|
								*           tranformed vector x.
							 | 
						|
								*
							 | 
						|
								*  INCX   - INTEGER.
							 | 
						|
								*           On entry, INCX specifies the increment for the elements of
							 | 
						|
								*           X. INCX must not be zero.
							 | 
						|
								*           Unchanged on exit.
							 | 
						|
								*
							 | 
						|
								*  Further Details
							 | 
						|
								*  ===============
							 | 
						|
								*
							 | 
						|
								*  Level 2 Blas routine.
							 | 
						|
								*
							 | 
						|
								*  -- Written on 22-October-1986.
							 | 
						|
								*     Jack Dongarra, Argonne National Lab.
							 | 
						|
								*     Jeremy Du Croz, Nag Central Office.
							 | 
						|
								*     Sven Hammarling, Nag Central Office.
							 | 
						|
								*     Richard Hanson, Sandia National Labs.
							 | 
						|
								*
							 | 
						|
								*  =====================================================================
							 | 
						|
								*
							 | 
						|
								*     .. Parameters ..
							 | 
						|
								      DOUBLE COMPLEX ZERO
							 | 
						|
								      PARAMETER (ZERO= (0.0D+0,0.0D+0))
							 | 
						|
								*     ..
							 | 
						|
								*     .. Local Scalars ..
							 | 
						|
								      DOUBLE COMPLEX TEMP
							 | 
						|
								      INTEGER I,INFO,IX,J,JX,K,KK,KX
							 | 
						|
								      LOGICAL NOCONJ,NOUNIT
							 | 
						|
								*     ..
							 | 
						|
								*     .. External Functions ..
							 | 
						|
								      LOGICAL LSAME
							 | 
						|
								      EXTERNAL LSAME
							 | 
						|
								*     ..
							 | 
						|
								*     .. External Subroutines ..
							 | 
						|
								      EXTERNAL XERBLA
							 | 
						|
								*     ..
							 | 
						|
								*     .. Intrinsic Functions ..
							 | 
						|
								      INTRINSIC DCONJG
							 | 
						|
								*     ..
							 | 
						|
								*
							 | 
						|
								*     Test the input parameters.
							 | 
						|
								*
							 | 
						|
								      INFO = 0
							 | 
						|
								      IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
							 | 
						|
								          INFO = 1
							 | 
						|
								      ELSE IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND.
							 | 
						|
								     +         .NOT.LSAME(TRANS,'C')) THEN
							 | 
						|
								          INFO = 2
							 | 
						|
								      ELSE IF (.NOT.LSAME(DIAG,'U') .AND. .NOT.LSAME(DIAG,'N')) THEN
							 | 
						|
								          INFO = 3
							 | 
						|
								      ELSE IF (N.LT.0) THEN
							 | 
						|
								          INFO = 4
							 | 
						|
								      ELSE IF (INCX.EQ.0) THEN
							 | 
						|
								          INFO = 7
							 | 
						|
								      END IF
							 | 
						|
								      IF (INFO.NE.0) THEN
							 | 
						|
								          CALL XERBLA('ZTPMV ',INFO)
							 | 
						|
								          RETURN
							 | 
						|
								      END IF
							 | 
						|
								*
							 | 
						|
								*     Quick return if possible.
							 | 
						|
								*
							 | 
						|
								      IF (N.EQ.0) RETURN
							 | 
						|
								*
							 | 
						|
								      NOCONJ = LSAME(TRANS,'T')
							 | 
						|
								      NOUNIT = LSAME(DIAG,'N')
							 | 
						|
								*
							 | 
						|
								*     Set up the start point in X if the increment is not unity. This
							 | 
						|
								*     will be  ( N - 1 )*INCX  too small for descending loops.
							 | 
						|
								*
							 | 
						|
								      IF (INCX.LE.0) THEN
							 | 
						|
								          KX = 1 - (N-1)*INCX
							 | 
						|
								      ELSE IF (INCX.NE.1) THEN
							 | 
						|
								          KX = 1
							 | 
						|
								      END IF
							 | 
						|
								*
							 | 
						|
								*     Start the operations. In this version the elements of AP are
							 | 
						|
								*     accessed sequentially with one pass through AP.
							 | 
						|
								*
							 | 
						|
								      IF (LSAME(TRANS,'N')) THEN
							 | 
						|
								*
							 | 
						|
								*        Form  x:= A*x.
							 | 
						|
								*
							 | 
						|
								          IF (LSAME(UPLO,'U')) THEN
							 | 
						|
								              KK = 1
							 | 
						|
								              IF (INCX.EQ.1) THEN
							 | 
						|
								                  DO 20 J = 1,N
							 | 
						|
								                      IF (X(J).NE.ZERO) THEN
							 | 
						|
								                          TEMP = X(J)
							 | 
						|
								                          K = KK
							 | 
						|
								                          DO 10 I = 1,J - 1
							 | 
						|
								                              X(I) = X(I) + TEMP*AP(K)
							 | 
						|
								                              K = K + 1
							 | 
						|
								   10                     CONTINUE
							 | 
						|
								                          IF (NOUNIT) X(J) = X(J)*AP(KK+J-1)
							 | 
						|
								                      END IF
							 | 
						|
								                      KK = KK + J
							 | 
						|
								   20             CONTINUE
							 | 
						|
								              ELSE
							 | 
						|
								                  JX = KX
							 | 
						|
								                  DO 40 J = 1,N
							 | 
						|
								                      IF (X(JX).NE.ZERO) THEN
							 | 
						|
								                          TEMP = X(JX)
							 | 
						|
								                          IX = KX
							 | 
						|
								                          DO 30 K = KK,KK + J - 2
							 | 
						|
								                              X(IX) = X(IX) + TEMP*AP(K)
							 | 
						|
								                              IX = IX + INCX
							 | 
						|
								   30                     CONTINUE
							 | 
						|
								                          IF (NOUNIT) X(JX) = X(JX)*AP(KK+J-1)
							 | 
						|
								                      END IF
							 | 
						|
								                      JX = JX + INCX
							 | 
						|
								                      KK = KK + J
							 | 
						|
								   40             CONTINUE
							 | 
						|
								              END IF
							 | 
						|
								          ELSE
							 | 
						|
								              KK = (N* (N+1))/2
							 | 
						|
								              IF (INCX.EQ.1) THEN
							 | 
						|
								                  DO 60 J = N,1,-1
							 | 
						|
								                      IF (X(J).NE.ZERO) THEN
							 | 
						|
								                          TEMP = X(J)
							 | 
						|
								                          K = KK
							 | 
						|
								                          DO 50 I = N,J + 1,-1
							 | 
						|
								                              X(I) = X(I) + TEMP*AP(K)
							 | 
						|
								                              K = K - 1
							 | 
						|
								   50                     CONTINUE
							 | 
						|
								                          IF (NOUNIT) X(J) = X(J)*AP(KK-N+J)
							 | 
						|
								                      END IF
							 | 
						|
								                      KK = KK - (N-J+1)
							 | 
						|
								   60             CONTINUE
							 | 
						|
								              ELSE
							 | 
						|
								                  KX = KX + (N-1)*INCX
							 | 
						|
								                  JX = KX
							 | 
						|
								                  DO 80 J = N,1,-1
							 | 
						|
								                      IF (X(JX).NE.ZERO) THEN
							 | 
						|
								                          TEMP = X(JX)
							 | 
						|
								                          IX = KX
							 | 
						|
								                          DO 70 K = KK,KK - (N- (J+1)),-1
							 | 
						|
								                              X(IX) = X(IX) + TEMP*AP(K)
							 | 
						|
								                              IX = IX - INCX
							 | 
						|
								   70                     CONTINUE
							 | 
						|
								                          IF (NOUNIT) X(JX) = X(JX)*AP(KK-N+J)
							 | 
						|
								                      END IF
							 | 
						|
								                      JX = JX - INCX
							 | 
						|
								                      KK = KK - (N-J+1)
							 | 
						|
								   80             CONTINUE
							 | 
						|
								              END IF
							 | 
						|
								          END IF
							 | 
						|
								      ELSE
							 | 
						|
								*
							 | 
						|
								*        Form  x := A'*x  or  x := conjg( A' )*x.
							 | 
						|
								*
							 | 
						|
								          IF (LSAME(UPLO,'U')) THEN
							 | 
						|
								              KK = (N* (N+1))/2
							 | 
						|
								              IF (INCX.EQ.1) THEN
							 | 
						|
								                  DO 110 J = N,1,-1
							 | 
						|
								                      TEMP = X(J)
							 | 
						|
								                      K = KK - 1
							 | 
						|
								                      IF (NOCONJ) THEN
							 | 
						|
								                          IF (NOUNIT) TEMP = TEMP*AP(KK)
							 | 
						|
								                          DO 90 I = J - 1,1,-1
							 | 
						|
								                              TEMP = TEMP + AP(K)*X(I)
							 | 
						|
								                              K = K - 1
							 | 
						|
								   90                     CONTINUE
							 | 
						|
								                      ELSE
							 | 
						|
								                          IF (NOUNIT) TEMP = TEMP*DCONJG(AP(KK))
							 | 
						|
								                          DO 100 I = J - 1,1,-1
							 | 
						|
								                              TEMP = TEMP + DCONJG(AP(K))*X(I)
							 | 
						|
								                              K = K - 1
							 | 
						|
								  100                     CONTINUE
							 | 
						|
								                      END IF
							 | 
						|
								                      X(J) = TEMP
							 | 
						|
								                      KK = KK - J
							 | 
						|
								  110             CONTINUE
							 | 
						|
								              ELSE
							 | 
						|
								                  JX = KX + (N-1)*INCX
							 | 
						|
								                  DO 140 J = N,1,-1
							 | 
						|
								                      TEMP = X(JX)
							 | 
						|
								                      IX = JX
							 | 
						|
								                      IF (NOCONJ) THEN
							 | 
						|
								                          IF (NOUNIT) TEMP = TEMP*AP(KK)
							 | 
						|
								                          DO 120 K = KK - 1,KK - J + 1,-1
							 | 
						|
								                              IX = IX - INCX
							 | 
						|
								                              TEMP = TEMP + AP(K)*X(IX)
							 | 
						|
								  120                     CONTINUE
							 | 
						|
								                      ELSE
							 | 
						|
								                          IF (NOUNIT) TEMP = TEMP*DCONJG(AP(KK))
							 | 
						|
								                          DO 130 K = KK - 1,KK - J + 1,-1
							 | 
						|
								                              IX = IX - INCX
							 | 
						|
								                              TEMP = TEMP + DCONJG(AP(K))*X(IX)
							 | 
						|
								  130                     CONTINUE
							 | 
						|
								                      END IF
							 | 
						|
								                      X(JX) = TEMP
							 | 
						|
								                      JX = JX - INCX
							 | 
						|
								                      KK = KK - J
							 | 
						|
								  140             CONTINUE
							 | 
						|
								              END IF
							 | 
						|
								          ELSE
							 | 
						|
								              KK = 1
							 | 
						|
								              IF (INCX.EQ.1) THEN
							 | 
						|
								                  DO 170 J = 1,N
							 | 
						|
								                      TEMP = X(J)
							 | 
						|
								                      K = KK + 1
							 | 
						|
								                      IF (NOCONJ) THEN
							 | 
						|
								                          IF (NOUNIT) TEMP = TEMP*AP(KK)
							 | 
						|
								                          DO 150 I = J + 1,N
							 | 
						|
								                              TEMP = TEMP + AP(K)*X(I)
							 | 
						|
								                              K = K + 1
							 | 
						|
								  150                     CONTINUE
							 | 
						|
								                      ELSE
							 | 
						|
								                          IF (NOUNIT) TEMP = TEMP*DCONJG(AP(KK))
							 | 
						|
								                          DO 160 I = J + 1,N
							 | 
						|
								                              TEMP = TEMP + DCONJG(AP(K))*X(I)
							 | 
						|
								                              K = K + 1
							 | 
						|
								  160                     CONTINUE
							 | 
						|
								                      END IF
							 | 
						|
								                      X(J) = TEMP
							 | 
						|
								                      KK = KK + (N-J+1)
							 | 
						|
								  170             CONTINUE
							 | 
						|
								              ELSE
							 | 
						|
								                  JX = KX
							 | 
						|
								                  DO 200 J = 1,N
							 | 
						|
								                      TEMP = X(JX)
							 | 
						|
								                      IX = JX
							 | 
						|
								                      IF (NOCONJ) THEN
							 | 
						|
								                          IF (NOUNIT) TEMP = TEMP*AP(KK)
							 | 
						|
								                          DO 180 K = KK + 1,KK + N - J
							 | 
						|
								                              IX = IX + INCX
							 | 
						|
								                              TEMP = TEMP + AP(K)*X(IX)
							 | 
						|
								  180                     CONTINUE
							 | 
						|
								                      ELSE
							 | 
						|
								                          IF (NOUNIT) TEMP = TEMP*DCONJG(AP(KK))
							 | 
						|
								                          DO 190 K = KK + 1,KK + N - J
							 | 
						|
								                              IX = IX + INCX
							 | 
						|
								                              TEMP = TEMP + DCONJG(AP(K))*X(IX)
							 | 
						|
								  190                     CONTINUE
							 | 
						|
								                      END IF
							 | 
						|
								                      X(JX) = TEMP
							 | 
						|
								                      JX = JX + INCX
							 | 
						|
								                      KK = KK + (N-J+1)
							 | 
						|
								  200             CONTINUE
							 | 
						|
								              END IF
							 | 
						|
								          END IF
							 | 
						|
								      END IF
							 | 
						|
								*
							 | 
						|
								      RETURN
							 | 
						|
								*
							 | 
						|
								*     End of ZTPMV .
							 | 
						|
								*
							 | 
						|
								      END
							 |