You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							255 lines
						
					
					
						
							8.2 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							255 lines
						
					
					
						
							8.2 KiB
						
					
					
				
								      SUBROUTINE ZHPR2(UPLO,N,ALPHA,X,INCX,Y,INCY,AP)
							 | 
						|
								*     .. Scalar Arguments ..
							 | 
						|
								      DOUBLE COMPLEX ALPHA
							 | 
						|
								      INTEGER INCX,INCY,N
							 | 
						|
								      CHARACTER UPLO
							 | 
						|
								*     ..
							 | 
						|
								*     .. Array Arguments ..
							 | 
						|
								      DOUBLE COMPLEX AP(*),X(*),Y(*)
							 | 
						|
								*     ..
							 | 
						|
								*
							 | 
						|
								*  Purpose
							 | 
						|
								*  =======
							 | 
						|
								*
							 | 
						|
								*  ZHPR2  performs the hermitian rank 2 operation
							 | 
						|
								*
							 | 
						|
								*     A := alpha*x*conjg( y' ) + conjg( alpha )*y*conjg( x' ) + A,
							 | 
						|
								*
							 | 
						|
								*  where alpha is a scalar, x and y are n element vectors and A is an
							 | 
						|
								*  n by n hermitian matrix, supplied in packed form.
							 | 
						|
								*
							 | 
						|
								*  Arguments
							 | 
						|
								*  ==========
							 | 
						|
								*
							 | 
						|
								*  UPLO   - CHARACTER*1.
							 | 
						|
								*           On entry, UPLO specifies whether the upper or lower
							 | 
						|
								*           triangular part of the matrix A is supplied in the packed
							 | 
						|
								*           array AP as follows:
							 | 
						|
								*
							 | 
						|
								*              UPLO = 'U' or 'u'   The upper triangular part of A is
							 | 
						|
								*                                  supplied in AP.
							 | 
						|
								*
							 | 
						|
								*              UPLO = 'L' or 'l'   The lower triangular part of A is
							 | 
						|
								*                                  supplied in AP.
							 | 
						|
								*
							 | 
						|
								*           Unchanged on exit.
							 | 
						|
								*
							 | 
						|
								*  N      - INTEGER.
							 | 
						|
								*           On entry, N specifies the order of the matrix A.
							 | 
						|
								*           N must be at least zero.
							 | 
						|
								*           Unchanged on exit.
							 | 
						|
								*
							 | 
						|
								*  ALPHA  - COMPLEX*16      .
							 | 
						|
								*           On entry, ALPHA specifies the scalar alpha.
							 | 
						|
								*           Unchanged on exit.
							 | 
						|
								*
							 | 
						|
								*  X      - COMPLEX*16       array of dimension at least
							 | 
						|
								*           ( 1 + ( n - 1 )*abs( INCX ) ).
							 | 
						|
								*           Before entry, the incremented array X must contain the n
							 | 
						|
								*           element vector x.
							 | 
						|
								*           Unchanged on exit.
							 | 
						|
								*
							 | 
						|
								*  INCX   - INTEGER.
							 | 
						|
								*           On entry, INCX specifies the increment for the elements of
							 | 
						|
								*           X. INCX must not be zero.
							 | 
						|
								*           Unchanged on exit.
							 | 
						|
								*
							 | 
						|
								*  Y      - COMPLEX*16       array of dimension at least
							 | 
						|
								*           ( 1 + ( n - 1 )*abs( INCY ) ).
							 | 
						|
								*           Before entry, the incremented array Y must contain the n
							 | 
						|
								*           element vector y.
							 | 
						|
								*           Unchanged on exit.
							 | 
						|
								*
							 | 
						|
								*  INCY   - INTEGER.
							 | 
						|
								*           On entry, INCY specifies the increment for the elements of
							 | 
						|
								*           Y. INCY must not be zero.
							 | 
						|
								*           Unchanged on exit.
							 | 
						|
								*
							 | 
						|
								*  AP     - COMPLEX*16       array of DIMENSION at least
							 | 
						|
								*           ( ( n*( n + 1 ) )/2 ).
							 | 
						|
								*           Before entry with  UPLO = 'U' or 'u', the array AP must
							 | 
						|
								*           contain the upper triangular part of the hermitian matrix
							 | 
						|
								*           packed sequentially, column by column, so that AP( 1 )
							 | 
						|
								*           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 )
							 | 
						|
								*           and a( 2, 2 ) respectively, and so on. On exit, the array
							 | 
						|
								*           AP is overwritten by the upper triangular part of the
							 | 
						|
								*           updated matrix.
							 | 
						|
								*           Before entry with UPLO = 'L' or 'l', the array AP must
							 | 
						|
								*           contain the lower triangular part of the hermitian matrix
							 | 
						|
								*           packed sequentially, column by column, so that AP( 1 )
							 | 
						|
								*           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 )
							 | 
						|
								*           and a( 3, 1 ) respectively, and so on. On exit, the array
							 | 
						|
								*           AP is overwritten by the lower triangular part of the
							 | 
						|
								*           updated matrix.
							 | 
						|
								*           Note that the imaginary parts of the diagonal elements need
							 | 
						|
								*           not be set, they are assumed to be zero, and on exit they
							 | 
						|
								*           are set to zero.
							 | 
						|
								*
							 | 
						|
								*  Further Details
							 | 
						|
								*  ===============
							 | 
						|
								*
							 | 
						|
								*  Level 2 Blas routine.
							 | 
						|
								*
							 | 
						|
								*  -- Written on 22-October-1986.
							 | 
						|
								*     Jack Dongarra, Argonne National Lab.
							 | 
						|
								*     Jeremy Du Croz, Nag Central Office.
							 | 
						|
								*     Sven Hammarling, Nag Central Office.
							 | 
						|
								*     Richard Hanson, Sandia National Labs.
							 | 
						|
								*
							 | 
						|
								*  =====================================================================
							 | 
						|
								*
							 | 
						|
								*     .. Parameters ..
							 | 
						|
								      DOUBLE COMPLEX ZERO
							 | 
						|
								      PARAMETER (ZERO= (0.0D+0,0.0D+0))
							 | 
						|
								*     ..
							 | 
						|
								*     .. Local Scalars ..
							 | 
						|
								      DOUBLE COMPLEX TEMP1,TEMP2
							 | 
						|
								      INTEGER I,INFO,IX,IY,J,JX,JY,K,KK,KX,KY
							 | 
						|
								*     ..
							 | 
						|
								*     .. External Functions ..
							 | 
						|
								      LOGICAL LSAME
							 | 
						|
								      EXTERNAL LSAME
							 | 
						|
								*     ..
							 | 
						|
								*     .. External Subroutines ..
							 | 
						|
								      EXTERNAL XERBLA
							 | 
						|
								*     ..
							 | 
						|
								*     .. Intrinsic Functions ..
							 | 
						|
								      INTRINSIC DBLE,DCONJG
							 | 
						|
								*     ..
							 | 
						|
								*
							 | 
						|
								*     Test the input parameters.
							 | 
						|
								*
							 | 
						|
								      INFO = 0
							 | 
						|
								      IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
							 | 
						|
								          INFO = 1
							 | 
						|
								      ELSE IF (N.LT.0) THEN
							 | 
						|
								          INFO = 2
							 | 
						|
								      ELSE IF (INCX.EQ.0) THEN
							 | 
						|
								          INFO = 5
							 | 
						|
								      ELSE IF (INCY.EQ.0) THEN
							 | 
						|
								          INFO = 7
							 | 
						|
								      END IF
							 | 
						|
								      IF (INFO.NE.0) THEN
							 | 
						|
								          CALL XERBLA('ZHPR2 ',INFO)
							 | 
						|
								          RETURN
							 | 
						|
								      END IF
							 | 
						|
								*
							 | 
						|
								*     Quick return if possible.
							 | 
						|
								*
							 | 
						|
								      IF ((N.EQ.0) .OR. (ALPHA.EQ.ZERO)) RETURN
							 | 
						|
								*
							 | 
						|
								*     Set up the start points in X and Y if the increments are not both
							 | 
						|
								*     unity.
							 | 
						|
								*
							 | 
						|
								      IF ((INCX.NE.1) .OR. (INCY.NE.1)) THEN
							 | 
						|
								          IF (INCX.GT.0) THEN
							 | 
						|
								              KX = 1
							 | 
						|
								          ELSE
							 | 
						|
								              KX = 1 - (N-1)*INCX
							 | 
						|
								          END IF
							 | 
						|
								          IF (INCY.GT.0) THEN
							 | 
						|
								              KY = 1
							 | 
						|
								          ELSE
							 | 
						|
								              KY = 1 - (N-1)*INCY
							 | 
						|
								          END IF
							 | 
						|
								          JX = KX
							 | 
						|
								          JY = KY
							 | 
						|
								      END IF
							 | 
						|
								*
							 | 
						|
								*     Start the operations. In this version the elements of the array AP
							 | 
						|
								*     are accessed sequentially with one pass through AP.
							 | 
						|
								*
							 | 
						|
								      KK = 1
							 | 
						|
								      IF (LSAME(UPLO,'U')) THEN
							 | 
						|
								*
							 | 
						|
								*        Form  A  when upper triangle is stored in AP.
							 | 
						|
								*
							 | 
						|
								          IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
							 | 
						|
								              DO 20 J = 1,N
							 | 
						|
								                  IF ((X(J).NE.ZERO) .OR. (Y(J).NE.ZERO)) THEN
							 | 
						|
								                      TEMP1 = ALPHA*DCONJG(Y(J))
							 | 
						|
								                      TEMP2 = DCONJG(ALPHA*X(J))
							 | 
						|
								                      K = KK
							 | 
						|
								                      DO 10 I = 1,J - 1
							 | 
						|
								                          AP(K) = AP(K) + X(I)*TEMP1 + Y(I)*TEMP2
							 | 
						|
								                          K = K + 1
							 | 
						|
								   10                 CONTINUE
							 | 
						|
								                      AP(KK+J-1) = DBLE(AP(KK+J-1)) +
							 | 
						|
								     +                             DBLE(X(J)*TEMP1+Y(J)*TEMP2)
							 | 
						|
								                  ELSE
							 | 
						|
								                      AP(KK+J-1) = DBLE(AP(KK+J-1))
							 | 
						|
								                  END IF
							 | 
						|
								                  KK = KK + J
							 | 
						|
								   20         CONTINUE
							 | 
						|
								          ELSE
							 | 
						|
								              DO 40 J = 1,N
							 | 
						|
								                  IF ((X(JX).NE.ZERO) .OR. (Y(JY).NE.ZERO)) THEN
							 | 
						|
								                      TEMP1 = ALPHA*DCONJG(Y(JY))
							 | 
						|
								                      TEMP2 = DCONJG(ALPHA*X(JX))
							 | 
						|
								                      IX = KX
							 | 
						|
								                      IY = KY
							 | 
						|
								                      DO 30 K = KK,KK + J - 2
							 | 
						|
								                          AP(K) = AP(K) + X(IX)*TEMP1 + Y(IY)*TEMP2
							 | 
						|
								                          IX = IX + INCX
							 | 
						|
								                          IY = IY + INCY
							 | 
						|
								   30                 CONTINUE
							 | 
						|
								                      AP(KK+J-1) = DBLE(AP(KK+J-1)) +
							 | 
						|
								     +                             DBLE(X(JX)*TEMP1+Y(JY)*TEMP2)
							 | 
						|
								                  ELSE
							 | 
						|
								                      AP(KK+J-1) = DBLE(AP(KK+J-1))
							 | 
						|
								                  END IF
							 | 
						|
								                  JX = JX + INCX
							 | 
						|
								                  JY = JY + INCY
							 | 
						|
								                  KK = KK + J
							 | 
						|
								   40         CONTINUE
							 | 
						|
								          END IF
							 | 
						|
								      ELSE
							 | 
						|
								*
							 | 
						|
								*        Form  A  when lower triangle is stored in AP.
							 | 
						|
								*
							 | 
						|
								          IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
							 | 
						|
								              DO 60 J = 1,N
							 | 
						|
								                  IF ((X(J).NE.ZERO) .OR. (Y(J).NE.ZERO)) THEN
							 | 
						|
								                      TEMP1 = ALPHA*DCONJG(Y(J))
							 | 
						|
								                      TEMP2 = DCONJG(ALPHA*X(J))
							 | 
						|
								                      AP(KK) = DBLE(AP(KK)) +
							 | 
						|
								     +                         DBLE(X(J)*TEMP1+Y(J)*TEMP2)
							 | 
						|
								                      K = KK + 1
							 | 
						|
								                      DO 50 I = J + 1,N
							 | 
						|
								                          AP(K) = AP(K) + X(I)*TEMP1 + Y(I)*TEMP2
							 | 
						|
								                          K = K + 1
							 | 
						|
								   50                 CONTINUE
							 | 
						|
								                  ELSE
							 | 
						|
								                      AP(KK) = DBLE(AP(KK))
							 | 
						|
								                  END IF
							 | 
						|
								                  KK = KK + N - J + 1
							 | 
						|
								   60         CONTINUE
							 | 
						|
								          ELSE
							 | 
						|
								              DO 80 J = 1,N
							 | 
						|
								                  IF ((X(JX).NE.ZERO) .OR. (Y(JY).NE.ZERO)) THEN
							 | 
						|
								                      TEMP1 = ALPHA*DCONJG(Y(JY))
							 | 
						|
								                      TEMP2 = DCONJG(ALPHA*X(JX))
							 | 
						|
								                      AP(KK) = DBLE(AP(KK)) +
							 | 
						|
								     +                         DBLE(X(JX)*TEMP1+Y(JY)*TEMP2)
							 | 
						|
								                      IX = JX
							 | 
						|
								                      IY = JY
							 | 
						|
								                      DO 70 K = KK + 1,KK + N - J
							 | 
						|
								                          IX = IX + INCX
							 | 
						|
								                          IY = IY + INCY
							 | 
						|
								                          AP(K) = AP(K) + X(IX)*TEMP1 + Y(IY)*TEMP2
							 | 
						|
								   70                 CONTINUE
							 | 
						|
								                  ELSE
							 | 
						|
								                      AP(KK) = DBLE(AP(KK))
							 | 
						|
								                  END IF
							 | 
						|
								                  JX = JX + INCX
							 | 
						|
								                  JY = JY + INCY
							 | 
						|
								                  KK = KK + N - J + 1
							 | 
						|
								   80         CONTINUE
							 | 
						|
								          END IF
							 | 
						|
								      END IF
							 | 
						|
								*
							 | 
						|
								      RETURN
							 | 
						|
								*
							 | 
						|
								*     End of ZHPR2 .
							 | 
						|
								*
							 | 
						|
								      END
							 |