You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

924 lines
32 KiB

/* glpmat.c */
/***********************************************************************
* This code is part of GLPK (GNU Linear Programming Kit).
*
* Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
* 2009, 2010, 2011, 2013 Andrew Makhorin, Department for Applied
* Informatics, Moscow Aviation Institute, Moscow, Russia. All rights
* reserved. E-mail: <mao@gnu.org>.
*
* GLPK is free software: you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GLPK is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
* License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GLPK. If not, see <http://www.gnu.org/licenses/>.
***********************************************************************/
#include "env.h"
#include "glpmat.h"
#include "qmd.h"
#include "amd.h"
#include "colamd.h"
/*----------------------------------------------------------------------
-- check_fvs - check sparse vector in full-vector storage format.
--
-- SYNOPSIS
--
-- #include "glpmat.h"
-- int check_fvs(int n, int nnz, int ind[], double vec[]);
--
-- DESCRIPTION
--
-- The routine check_fvs checks if a given vector of dimension n in
-- full-vector storage format has correct representation.
--
-- RETURNS
--
-- The routine returns one of the following codes:
--
-- 0 - the vector is correct;
-- 1 - the number of elements (n) is negative;
-- 2 - the number of non-zero elements (nnz) is negative;
-- 3 - some element index is out of range;
-- 4 - some element index is duplicate;
-- 5 - some non-zero element is out of pattern. */
int check_fvs(int n, int nnz, int ind[], double vec[])
{ int i, t, ret, *flag = NULL;
/* check the number of elements */
if (n < 0)
{ ret = 1;
goto done;
}
/* check the number of non-zero elements */
if (nnz < 0)
{ ret = 2;
goto done;
}
/* check vector indices */
flag = xcalloc(1+n, sizeof(int));
for (i = 1; i <= n; i++) flag[i] = 0;
for (t = 1; t <= nnz; t++)
{ i = ind[t];
if (!(1 <= i && i <= n))
{ ret = 3;
goto done;
}
if (flag[i])
{ ret = 4;
goto done;
}
flag[i] = 1;
}
/* check vector elements */
for (i = 1; i <= n; i++)
{ if (!flag[i] && vec[i] != 0.0)
{ ret = 5;
goto done;
}
}
/* the vector is ok */
ret = 0;
done: if (flag != NULL) xfree(flag);
return ret;
}
/*----------------------------------------------------------------------
-- check_pattern - check pattern of sparse matrix.
--
-- SYNOPSIS
--
-- #include "glpmat.h"
-- int check_pattern(int m, int n, int A_ptr[], int A_ind[]);
--
-- DESCRIPTION
--
-- The routine check_pattern checks the pattern of a given mxn matrix
-- in storage-by-rows format.
--
-- RETURNS
--
-- The routine returns one of the following codes:
--
-- 0 - the pattern is correct;
-- 1 - the number of rows (m) is negative;
-- 2 - the number of columns (n) is negative;
-- 3 - A_ptr[1] is not 1;
-- 4 - some column index is out of range;
-- 5 - some column indices are duplicate. */
int check_pattern(int m, int n, int A_ptr[], int A_ind[])
{ int i, j, ptr, ret, *flag = NULL;
/* check the number of rows */
if (m < 0)
{ ret = 1;
goto done;
}
/* check the number of columns */
if (n < 0)
{ ret = 2;
goto done;
}
/* check location A_ptr[1] */
if (A_ptr[1] != 1)
{ ret = 3;
goto done;
}
/* check row patterns */
flag = xcalloc(1+n, sizeof(int));
for (j = 1; j <= n; j++) flag[j] = 0;
for (i = 1; i <= m; i++)
{ /* check pattern of row i */
for (ptr = A_ptr[i]; ptr < A_ptr[i+1]; ptr++)
{ j = A_ind[ptr];
/* check column index */
if (!(1 <= j && j <= n))
{ ret = 4;
goto done;
}
/* check for duplication */
if (flag[j])
{ ret = 5;
goto done;
}
flag[j] = 1;
}
/* clear flags */
for (ptr = A_ptr[i]; ptr < A_ptr[i+1]; ptr++)
{ j = A_ind[ptr];
flag[j] = 0;
}
}
/* the pattern is ok */
ret = 0;
done: if (flag != NULL) xfree(flag);
return ret;
}
/*----------------------------------------------------------------------
-- transpose - transpose sparse matrix.
--
-- *Synopsis*
--
-- #include "glpmat.h"
-- void transpose(int m, int n, int A_ptr[], int A_ind[],
-- double A_val[], int AT_ptr[], int AT_ind[], double AT_val[]);
--
-- *Description*
--
-- For a given mxn sparse matrix A the routine transpose builds a nxm
-- sparse matrix A' which is a matrix transposed to A.
--
-- The arrays A_ptr, A_ind, and A_val specify a given mxn matrix A to
-- be transposed in storage-by-rows format. The parameter A_val can be
-- NULL, in which case numeric values are not copied. The arrays A_ptr,
-- A_ind, and A_val are not changed on exit.
--
-- On entry the arrays AT_ptr, AT_ind, and AT_val must be allocated,
-- but their content is ignored. On exit the routine stores a resultant
-- nxm matrix A' in these arrays in storage-by-rows format. Note that
-- if the parameter A_val is NULL, the array AT_val is not used.
--
-- The routine transpose has a side effect that elements in rows of the
-- resultant matrix A' follow in ascending their column indices. */
void transpose(int m, int n, int A_ptr[], int A_ind[], double A_val[],
int AT_ptr[], int AT_ind[], double AT_val[])
{ int i, j, t, beg, end, pos, len;
/* determine row lengths of resultant matrix */
for (j = 1; j <= n; j++) AT_ptr[j] = 0;
for (i = 1; i <= m; i++)
{ beg = A_ptr[i], end = A_ptr[i+1];
for (t = beg; t < end; t++) AT_ptr[A_ind[t]]++;
}
/* set up row pointers of resultant matrix */
pos = 1;
for (j = 1; j <= n; j++)
len = AT_ptr[j], pos += len, AT_ptr[j] = pos;
AT_ptr[n+1] = pos;
/* build resultant matrix */
for (i = m; i >= 1; i--)
{ beg = A_ptr[i], end = A_ptr[i+1];
for (t = beg; t < end; t++)
{ pos = --AT_ptr[A_ind[t]];
AT_ind[pos] = i;
if (A_val != NULL) AT_val[pos] = A_val[t];
}
}
return;
}
/*----------------------------------------------------------------------
-- adat_symbolic - compute S = P*A*D*A'*P' (symbolic phase).
--
-- *Synopsis*
--
-- #include "glpmat.h"
-- int *adat_symbolic(int m, int n, int P_per[], int A_ptr[],
-- int A_ind[], int S_ptr[]);
--
-- *Description*
--
-- The routine adat_symbolic implements the symbolic phase to compute
-- symmetric matrix S = P*A*D*A'*P', where P is a permutation matrix,
-- A is a given sparse matrix, D is a diagonal matrix, A' is a matrix
-- transposed to A, P' is an inverse of P.
--
-- The parameter m is the number of rows in A and the order of P.
--
-- The parameter n is the number of columns in A and the order of D.
--
-- The array P_per specifies permutation matrix P. It is not changed on
-- exit.
--
-- The arrays A_ptr and A_ind specify the pattern of matrix A. They are
-- not changed on exit.
--
-- On exit the routine stores the pattern of upper triangular part of
-- matrix S without diagonal elements in the arrays S_ptr and S_ind in
-- storage-by-rows format. The array S_ptr should be allocated on entry,
-- however, its content is ignored. The array S_ind is allocated by the
-- routine itself which returns a pointer to it.
--
-- *Returns*
--
-- The routine returns a pointer to the array S_ind. */
int *adat_symbolic(int m, int n, int P_per[], int A_ptr[], int A_ind[],
int S_ptr[])
{ int i, j, t, ii, jj, tt, k, size, len;
int *S_ind, *AT_ptr, *AT_ind, *ind, *map, *temp;
/* build the pattern of A', which is a matrix transposed to A, to
efficiently access A in column-wise manner */
AT_ptr = xcalloc(1+n+1, sizeof(int));
AT_ind = xcalloc(A_ptr[m+1], sizeof(int));
transpose(m, n, A_ptr, A_ind, NULL, AT_ptr, AT_ind, NULL);
/* allocate the array S_ind */
size = A_ptr[m+1] - 1;
if (size < m) size = m;
S_ind = xcalloc(1+size, sizeof(int));
/* allocate and initialize working arrays */
ind = xcalloc(1+m, sizeof(int));
map = xcalloc(1+m, sizeof(int));
for (jj = 1; jj <= m; jj++) map[jj] = 0;
/* compute pattern of S; note that symbolically S = B*B', where
B = P*A, B' is matrix transposed to B */
S_ptr[1] = 1;
for (ii = 1; ii <= m; ii++)
{ /* compute pattern of ii-th row of S */
len = 0;
i = P_per[ii]; /* i-th row of A = ii-th row of B */
for (t = A_ptr[i]; t < A_ptr[i+1]; t++)
{ k = A_ind[t];
/* walk through k-th column of A */
for (tt = AT_ptr[k]; tt < AT_ptr[k+1]; tt++)
{ j = AT_ind[tt];
jj = P_per[m+j]; /* j-th row of A = jj-th row of B */
/* a[i,k] != 0 and a[j,k] != 0 ergo s[ii,jj] != 0 */
if (ii < jj && !map[jj]) ind[++len] = jj, map[jj] = 1;
}
}
/* now (ind) is pattern of ii-th row of S */
S_ptr[ii+1] = S_ptr[ii] + len;
/* at least (S_ptr[ii+1] - 1) locations should be available in
the array S_ind */
if (S_ptr[ii+1] - 1 > size)
{ temp = S_ind;
size += size;
S_ind = xcalloc(1+size, sizeof(int));
memcpy(&S_ind[1], &temp[1], (S_ptr[ii] - 1) * sizeof(int));
xfree(temp);
}
xassert(S_ptr[ii+1] - 1 <= size);
/* (ii-th row of S) := (ind) */
memcpy(&S_ind[S_ptr[ii]], &ind[1], len * sizeof(int));
/* clear the row pattern map */
for (t = 1; t <= len; t++) map[ind[t]] = 0;
}
/* free working arrays */
xfree(AT_ptr);
xfree(AT_ind);
xfree(ind);
xfree(map);
/* reallocate the array S_ind to free unused locations */
temp = S_ind;
size = S_ptr[m+1] - 1;
S_ind = xcalloc(1+size, sizeof(int));
memcpy(&S_ind[1], &temp[1], size * sizeof(int));
xfree(temp);
return S_ind;
}
/*----------------------------------------------------------------------
-- adat_numeric - compute S = P*A*D*A'*P' (numeric phase).
--
-- *Synopsis*
--
-- #include "glpmat.h"
-- void adat_numeric(int m, int n, int P_per[],
-- int A_ptr[], int A_ind[], double A_val[], double D_diag[],
-- int S_ptr[], int S_ind[], double S_val[], double S_diag[]);
--
-- *Description*
--
-- The routine adat_numeric implements the numeric phase to compute
-- symmetric matrix S = P*A*D*A'*P', where P is a permutation matrix,
-- A is a given sparse matrix, D is a diagonal matrix, A' is a matrix
-- transposed to A, P' is an inverse of P.
--
-- The parameter m is the number of rows in A and the order of P.
--
-- The parameter n is the number of columns in A and the order of D.
--
-- The matrix P is specified in the array P_per, which is not changed
-- on exit.
--
-- The matrix A is specified in the arrays A_ptr, A_ind, and A_val in
-- storage-by-rows format. These arrays are not changed on exit.
--
-- Diagonal elements of the matrix D are specified in the array D_diag,
-- where D_diag[0] is not used, D_diag[i] = d[i,i] for i = 1, ..., n.
-- The array D_diag is not changed on exit.
--
-- The pattern of the upper triangular part of the matrix S without
-- diagonal elements (previously computed by the routine adat_symbolic)
-- is specified in the arrays S_ptr and S_ind, which are not changed on
-- exit. Numeric values of non-diagonal elements of S are stored in
-- corresponding locations of the array S_val, and values of diagonal
-- elements of S are stored in locations S_diag[1], ..., S_diag[n]. */
void adat_numeric(int m, int n, int P_per[],
int A_ptr[], int A_ind[], double A_val[], double D_diag[],
int S_ptr[], int S_ind[], double S_val[], double S_diag[])
{ int i, j, t, ii, jj, tt, beg, end, beg1, end1, k;
double sum, *work;
work = xcalloc(1+n, sizeof(double));
for (j = 1; j <= n; j++) work[j] = 0.0;
/* compute S = B*D*B', where B = P*A, B' is a matrix transposed
to B */
for (ii = 1; ii <= m; ii++)
{ i = P_per[ii]; /* i-th row of A = ii-th row of B */
/* (work) := (i-th row of A) */
beg = A_ptr[i], end = A_ptr[i+1];
for (t = beg; t < end; t++)
work[A_ind[t]] = A_val[t];
/* compute ii-th row of S */
beg = S_ptr[ii], end = S_ptr[ii+1];
for (t = beg; t < end; t++)
{ jj = S_ind[t];
j = P_per[jj]; /* j-th row of A = jj-th row of B */
/* s[ii,jj] := sum a[i,k] * d[k,k] * a[j,k] */
sum = 0.0;
beg1 = A_ptr[j], end1 = A_ptr[j+1];
for (tt = beg1; tt < end1; tt++)
{ k = A_ind[tt];
sum += work[k] * D_diag[k] * A_val[tt];
}
S_val[t] = sum;
}
/* s[ii,ii] := sum a[i,k] * d[k,k] * a[i,k] */
sum = 0.0;
beg = A_ptr[i], end = A_ptr[i+1];
for (t = beg; t < end; t++)
{ k = A_ind[t];
sum += A_val[t] * D_diag[k] * A_val[t];
work[k] = 0.0;
}
S_diag[ii] = sum;
}
xfree(work);
return;
}
/*----------------------------------------------------------------------
-- min_degree - minimum degree ordering.
--
-- *Synopsis*
--
-- #include "glpmat.h"
-- void min_degree(int n, int A_ptr[], int A_ind[], int P_per[]);
--
-- *Description*
--
-- The routine min_degree uses the minimum degree ordering algorithm
-- to find a permutation matrix P for a given sparse symmetric positive
-- matrix A which minimizes the number of non-zeros in upper triangular
-- factor U for Cholesky factorization P*A*P' = U'*U.
--
-- The parameter n is the order of matrices A and P.
--
-- The pattern of the given matrix A is specified on entry in the arrays
-- A_ptr and A_ind in storage-by-rows format. Only the upper triangular
-- part without diagonal elements (which all are assumed to be non-zero)
-- should be specified as if A were upper triangular. The arrays A_ptr
-- and A_ind are not changed on exit.
--
-- The permutation matrix P is stored by the routine in the array P_per
-- on exit.
--
-- *Algorithm*
--
-- The routine min_degree is based on some subroutines from the package
-- SPARSPAK (see comments in the module glpqmd). */
void min_degree(int n, int A_ptr[], int A_ind[], int P_per[])
{ int i, j, ne, t, pos, len;
int *xadj, *adjncy, *deg, *marker, *rchset, *nbrhd, *qsize,
*qlink, nofsub;
/* determine number of non-zeros in complete pattern */
ne = A_ptr[n+1] - 1;
ne += ne;
/* allocate working arrays */
xadj = xcalloc(1+n+1, sizeof(int));
adjncy = xcalloc(1+ne, sizeof(int));
deg = xcalloc(1+n, sizeof(int));
marker = xcalloc(1+n, sizeof(int));
rchset = xcalloc(1+n, sizeof(int));
nbrhd = xcalloc(1+n, sizeof(int));
qsize = xcalloc(1+n, sizeof(int));
qlink = xcalloc(1+n, sizeof(int));
/* determine row lengths in complete pattern */
for (i = 1; i <= n; i++) xadj[i] = 0;
for (i = 1; i <= n; i++)
{ for (t = A_ptr[i]; t < A_ptr[i+1]; t++)
{ j = A_ind[t];
xassert(i < j && j <= n);
xadj[i]++, xadj[j]++;
}
}
/* set up row pointers for complete pattern */
pos = 1;
for (i = 1; i <= n; i++)
len = xadj[i], pos += len, xadj[i] = pos;
xadj[n+1] = pos;
xassert(pos - 1 == ne);
/* construct complete pattern */
for (i = 1; i <= n; i++)
{ for (t = A_ptr[i]; t < A_ptr[i+1]; t++)
{ j = A_ind[t];
adjncy[--xadj[i]] = j, adjncy[--xadj[j]] = i;
}
}
/* call the main minimimum degree ordering routine */
genqmd(&n, xadj, adjncy, P_per, P_per + n, deg, marker, rchset,
nbrhd, qsize, qlink, &nofsub);
/* make sure that permutation matrix P is correct */
for (i = 1; i <= n; i++)
{ j = P_per[i];
xassert(1 <= j && j <= n);
xassert(P_per[n+j] == i);
}
/* free working arrays */
xfree(xadj);
xfree(adjncy);
xfree(deg);
xfree(marker);
xfree(rchset);
xfree(nbrhd);
xfree(qsize);
xfree(qlink);
return;
}
/**********************************************************************/
void amd_order1(int n, int A_ptr[], int A_ind[], int P_per[])
{ /* approximate minimum degree ordering (AMD) */
int k, ret;
double Control[AMD_CONTROL], Info[AMD_INFO];
/* get the default parameters */
amd_defaults(Control);
#if 0
/* and print them */
amd_control(Control);
#endif
/* make all indices 0-based */
for (k = 1; k < A_ptr[n+1]; k++) A_ind[k]--;
for (k = 1; k <= n+1; k++) A_ptr[k]--;
/* call the ordering routine */
ret = amd_order(n, &A_ptr[1], &A_ind[1], &P_per[1], Control, Info)
;
#if 0
amd_info(Info);
#endif
xassert(ret == AMD_OK || ret == AMD_OK_BUT_JUMBLED);
/* retsore 1-based indices */
for (k = 1; k <= n+1; k++) A_ptr[k]++;
for (k = 1; k < A_ptr[n+1]; k++) A_ind[k]++;
/* patch up permutation matrix */
memset(&P_per[n+1], 0, n * sizeof(int));
for (k = 1; k <= n; k++)
{ P_per[k]++;
xassert(1 <= P_per[k] && P_per[k] <= n);
xassert(P_per[n+P_per[k]] == 0);
P_per[n+P_per[k]] = k;
}
return;
}
/**********************************************************************/
static void *allocate(size_t n, size_t size)
{ void *ptr;
ptr = xcalloc(n, size);
memset(ptr, 0, n * size);
return ptr;
}
static void release(void *ptr)
{ xfree(ptr);
return;
}
void symamd_ord(int n, int A_ptr[], int A_ind[], int P_per[])
{ /* approximate minimum degree ordering (SYMAMD) */
int k, ok;
int stats[COLAMD_STATS];
/* make all indices 0-based */
for (k = 1; k < A_ptr[n+1]; k++) A_ind[k]--;
for (k = 1; k <= n+1; k++) A_ptr[k]--;
/* call the ordering routine */
ok = symamd(n, &A_ind[1], &A_ptr[1], &P_per[1], NULL, stats,
allocate, release);
#if 0
symamd_report(stats);
#endif
xassert(ok);
/* restore 1-based indices */
for (k = 1; k <= n+1; k++) A_ptr[k]++;
for (k = 1; k < A_ptr[n+1]; k++) A_ind[k]++;
/* patch up permutation matrix */
memset(&P_per[n+1], 0, n * sizeof(int));
for (k = 1; k <= n; k++)
{ P_per[k]++;
xassert(1 <= P_per[k] && P_per[k] <= n);
xassert(P_per[n+P_per[k]] == 0);
P_per[n+P_per[k]] = k;
}
return;
}
/*----------------------------------------------------------------------
-- chol_symbolic - compute Cholesky factorization (symbolic phase).
--
-- *Synopsis*
--
-- #include "glpmat.h"
-- int *chol_symbolic(int n, int A_ptr[], int A_ind[], int U_ptr[]);
--
-- *Description*
--
-- The routine chol_symbolic implements the symbolic phase of Cholesky
-- factorization A = U'*U, where A is a given sparse symmetric positive
-- definite matrix, U is a resultant upper triangular factor, U' is a
-- matrix transposed to U.
--
-- The parameter n is the order of matrices A and U.
--
-- The pattern of the given matrix A is specified on entry in the arrays
-- A_ptr and A_ind in storage-by-rows format. Only the upper triangular
-- part without diagonal elements (which all are assumed to be non-zero)
-- should be specified as if A were upper triangular. The arrays A_ptr
-- and A_ind are not changed on exit.
--
-- The pattern of the matrix U without diagonal elements (which all are
-- assumed to be non-zero) is stored on exit from the routine in the
-- arrays U_ptr and U_ind in storage-by-rows format. The array U_ptr
-- should be allocated on entry, however, its content is ignored. The
-- array U_ind is allocated by the routine which returns a pointer to it
-- on exit.
--
-- *Returns*
--
-- The routine returns a pointer to the array U_ind.
--
-- *Method*
--
-- The routine chol_symbolic computes the pattern of the matrix U in a
-- row-wise manner. No pivoting is used.
--
-- It is known that to compute the pattern of row k of the matrix U we
-- need to merge the pattern of row k of the matrix A and the patterns
-- of each row i of U, where u[i,k] is non-zero (these rows are already
-- computed and placed above row k).
--
-- However, to reduce the number of rows to be merged the routine uses
-- an advanced algorithm proposed in:
--
-- D.J.Rose, R.E.Tarjan, and G.S.Lueker. Algorithmic aspects of vertex
-- elimination on graphs. SIAM J. Comput. 5, 1976, 266-83.
--
-- The authors of the cited paper show that we have the same result if
-- we merge row k of the matrix A and such rows of the matrix U (among
-- rows 1, ..., k-1) whose leftmost non-diagonal non-zero element is
-- placed in k-th column. This feature signficantly reduces the number
-- of rows to be merged, especially on the final steps, where rows of
-- the matrix U become quite dense.
--
-- To determine rows, which should be merged on k-th step, for a fixed
-- time the routine uses linked lists of row numbers of the matrix U.
-- Location head[k] contains the number of a first row, whose leftmost
-- non-diagonal non-zero element is placed in column k, and location
-- next[i] contains the number of a next row with the same property as
-- row i. */
int *chol_symbolic(int n, int A_ptr[], int A_ind[], int U_ptr[])
{ int i, j, k, t, len, size, beg, end, min_j, *U_ind, *head, *next,
*ind, *map, *temp;
/* initially we assume that on computing the pattern of U fill-in
will double the number of non-zeros in A */
size = A_ptr[n+1] - 1;
if (size < n) size = n;
size += size;
U_ind = xcalloc(1+size, sizeof(int));
/* allocate and initialize working arrays */
head = xcalloc(1+n, sizeof(int));
for (i = 1; i <= n; i++) head[i] = 0;
next = xcalloc(1+n, sizeof(int));
ind = xcalloc(1+n, sizeof(int));
map = xcalloc(1+n, sizeof(int));
for (j = 1; j <= n; j++) map[j] = 0;
/* compute the pattern of matrix U */
U_ptr[1] = 1;
for (k = 1; k <= n; k++)
{ /* compute the pattern of k-th row of U, which is the union of
k-th row of A and those rows of U (among 1, ..., k-1) whose
leftmost non-diagonal non-zero is placed in k-th column */
/* (ind) := (k-th row of A) */
len = A_ptr[k+1] - A_ptr[k];
memcpy(&ind[1], &A_ind[A_ptr[k]], len * sizeof(int));
for (t = 1; t <= len; t++)
{ j = ind[t];
xassert(k < j && j <= n);
map[j] = 1;
}
/* walk through rows of U whose leftmost non-diagonal non-zero
is placed in k-th column */
for (i = head[k]; i != 0; i = next[i])
{ /* (ind) := (ind) union (i-th row of U) */
beg = U_ptr[i], end = U_ptr[i+1];
for (t = beg; t < end; t++)
{ j = U_ind[t];
if (j > k && !map[j]) ind[++len] = j, map[j] = 1;
}
}
/* now (ind) is the pattern of k-th row of U */
U_ptr[k+1] = U_ptr[k] + len;
/* at least (U_ptr[k+1] - 1) locations should be available in
the array U_ind */
if (U_ptr[k+1] - 1 > size)
{ temp = U_ind;
size += size;
U_ind = xcalloc(1+size, sizeof(int));
memcpy(&U_ind[1], &temp[1], (U_ptr[k] - 1) * sizeof(int));
xfree(temp);
}
xassert(U_ptr[k+1] - 1 <= size);
/* (k-th row of U) := (ind) */
memcpy(&U_ind[U_ptr[k]], &ind[1], len * sizeof(int));
/* determine column index of leftmost non-diagonal non-zero in
k-th row of U and clear the row pattern map */
min_j = n + 1;
for (t = 1; t <= len; t++)
{ j = ind[t], map[j] = 0;
if (min_j > j) min_j = j;
}
/* include k-th row into corresponding linked list */
if (min_j <= n) next[k] = head[min_j], head[min_j] = k;
}
/* free working arrays */
xfree(head);
xfree(next);
xfree(ind);
xfree(map);
/* reallocate the array U_ind to free unused locations */
temp = U_ind;
size = U_ptr[n+1] - 1;
U_ind = xcalloc(1+size, sizeof(int));
memcpy(&U_ind[1], &temp[1], size * sizeof(int));
xfree(temp);
return U_ind;
}
/*----------------------------------------------------------------------
-- chol_numeric - compute Cholesky factorization (numeric phase).
--
-- *Synopsis*
--
-- #include "glpmat.h"
-- int chol_numeric(int n,
-- int A_ptr[], int A_ind[], double A_val[], double A_diag[],
-- int U_ptr[], int U_ind[], double U_val[], double U_diag[]);
--
-- *Description*
--
-- The routine chol_symbolic implements the numeric phase of Cholesky
-- factorization A = U'*U, where A is a given sparse symmetric positive
-- definite matrix, U is a resultant upper triangular factor, U' is a
-- matrix transposed to U.
--
-- The parameter n is the order of matrices A and U.
--
-- Upper triangular part of the matrix A without diagonal elements is
-- specified in the arrays A_ptr, A_ind, and A_val in storage-by-rows
-- format. Diagonal elements of A are specified in the array A_diag,
-- where A_diag[0] is not used, A_diag[i] = a[i,i] for i = 1, ..., n.
-- The arrays A_ptr, A_ind, A_val, and A_diag are not changed on exit.
--
-- The pattern of the matrix U without diagonal elements (previously
-- computed with the routine chol_symbolic) is specified in the arrays
-- U_ptr and U_ind, which are not changed on exit. Numeric values of
-- non-diagonal elements of U are stored in corresponding locations of
-- the array U_val, and values of diagonal elements of U are stored in
-- locations U_diag[1], ..., U_diag[n].
--
-- *Returns*
--
-- The routine returns the number of non-positive diagonal elements of
-- the matrix U which have been replaced by a huge positive number (see
-- the method description below). Zero return code means the matrix A
-- has been successfully factorized.
--
-- *Method*
--
-- The routine chol_numeric computes the matrix U in a row-wise manner
-- using standard gaussian elimination technique. No pivoting is used.
--
-- Initially the routine sets U = A, and before k-th elimination step
-- the matrix U is the following:
--
-- 1 k n
-- 1 x x x x x x x x x x
-- . x x x x x x x x x
-- . . x x x x x x x x
-- . . . x x x x x x x
-- k . . . . * * * * * *
-- . . . . * * * * * *
-- . . . . * * * * * *
-- . . . . * * * * * *
-- . . . . * * * * * *
-- n . . . . * * * * * *
--
-- where 'x' are elements of already computed rows, '*' are elements of
-- the active submatrix. (Note that the lower triangular part of the
-- active submatrix being symmetric is not stored and diagonal elements
-- are stored separately in the array U_diag.)
--
-- The matrix A is assumed to be positive definite. However, if it is
-- close to semi-definite, on some elimination step a pivot u[k,k] may
-- happen to be non-positive due to round-off errors. In this case the
-- routine uses a technique proposed in:
--
-- S.J.Wright. The Cholesky factorization in interior-point and barrier
-- methods. Preprint MCS-P600-0596, Mathematics and Computer Science
-- Division, Argonne National Laboratory, Argonne, Ill., May 1996.
--
-- The routine just replaces non-positive u[k,k] by a huge positive
-- number. This involves non-diagonal elements in k-th row of U to be
-- close to zero that, in turn, involves k-th component of a solution
-- vector to be close to zero. Note, however, that this technique works
-- only if the system A*x = b is consistent. */
int chol_numeric(int n,
int A_ptr[], int A_ind[], double A_val[], double A_diag[],
int U_ptr[], int U_ind[], double U_val[], double U_diag[])
{ int i, j, k, t, t1, beg, end, beg1, end1, count = 0;
double ukk, uki, *work;
work = xcalloc(1+n, sizeof(double));
for (j = 1; j <= n; j++) work[j] = 0.0;
/* U := (upper triangle of A) */
/* note that the upper traingle of A is a subset of U */
for (i = 1; i <= n; i++)
{ beg = A_ptr[i], end = A_ptr[i+1];
for (t = beg; t < end; t++)
j = A_ind[t], work[j] = A_val[t];
beg = U_ptr[i], end = U_ptr[i+1];
for (t = beg; t < end; t++)
j = U_ind[t], U_val[t] = work[j], work[j] = 0.0;
U_diag[i] = A_diag[i];
}
/* main elimination loop */
for (k = 1; k <= n; k++)
{ /* transform k-th row of U */
ukk = U_diag[k];
if (ukk > 0.0)
U_diag[k] = ukk = sqrt(ukk);
else
U_diag[k] = ukk = DBL_MAX, count++;
/* (work) := (transformed k-th row) */
beg = U_ptr[k], end = U_ptr[k+1];
for (t = beg; t < end; t++)
work[U_ind[t]] = (U_val[t] /= ukk);
/* transform other rows of U */
for (t = beg; t < end; t++)
{ i = U_ind[t];
xassert(i > k);
/* (i-th row) := (i-th row) - u[k,i] * (k-th row) */
uki = work[i];
beg1 = U_ptr[i], end1 = U_ptr[i+1];
for (t1 = beg1; t1 < end1; t1++)
U_val[t1] -= uki * work[U_ind[t1]];
U_diag[i] -= uki * uki;
}
/* (work) := 0 */
for (t = beg; t < end; t++)
work[U_ind[t]] = 0.0;
}
xfree(work);
return count;
}
/*----------------------------------------------------------------------
-- u_solve - solve upper triangular system U*x = b.
--
-- *Synopsis*
--
-- #include "glpmat.h"
-- void u_solve(int n, int U_ptr[], int U_ind[], double U_val[],
-- double U_diag[], double x[]);
--
-- *Description*
--
-- The routine u_solve solves an linear system U*x = b, where U is an
-- upper triangular matrix.
--
-- The parameter n is the order of matrix U.
--
-- The matrix U without diagonal elements is specified in the arrays
-- U_ptr, U_ind, and U_val in storage-by-rows format. Diagonal elements
-- of U are specified in the array U_diag, where U_diag[0] is not used,
-- U_diag[i] = u[i,i] for i = 1, ..., n. All these four arrays are not
-- changed on exit.
--
-- The right-hand side vector b is specified on entry in the array x,
-- where x[0] is not used, and x[i] = b[i] for i = 1, ..., n. On exit
-- the routine stores computed components of the vector of unknowns x
-- in the array x in the same manner. */
void u_solve(int n, int U_ptr[], int U_ind[], double U_val[],
double U_diag[], double x[])
{ int i, t, beg, end;
double temp;
for (i = n; i >= 1; i--)
{ temp = x[i];
beg = U_ptr[i], end = U_ptr[i+1];
for (t = beg; t < end; t++)
temp -= U_val[t] * x[U_ind[t]];
xassert(U_diag[i] != 0.0);
x[i] = temp / U_diag[i];
}
return;
}
/*----------------------------------------------------------------------
-- ut_solve - solve lower triangular system U'*x = b.
--
-- *Synopsis*
--
-- #include "glpmat.h"
-- void ut_solve(int n, int U_ptr[], int U_ind[], double U_val[],
-- double U_diag[], double x[]);
--
-- *Description*
--
-- The routine ut_solve solves an linear system U'*x = b, where U is a
-- matrix transposed to an upper triangular matrix.
--
-- The parameter n is the order of matrix U.
--
-- The matrix U without diagonal elements is specified in the arrays
-- U_ptr, U_ind, and U_val in storage-by-rows format. Diagonal elements
-- of U are specified in the array U_diag, where U_diag[0] is not used,
-- U_diag[i] = u[i,i] for i = 1, ..., n. All these four arrays are not
-- changed on exit.
--
-- The right-hand side vector b is specified on entry in the array x,
-- where x[0] is not used, and x[i] = b[i] for i = 1, ..., n. On exit
-- the routine stores computed components of the vector of unknowns x
-- in the array x in the same manner. */
void ut_solve(int n, int U_ptr[], int U_ind[], double U_val[],
double U_diag[], double x[])
{ int i, t, beg, end;
double temp;
for (i = 1; i <= n; i++)
{ xassert(U_diag[i] != 0.0);
temp = (x[i] /= U_diag[i]);
if (temp == 0.0) continue;
beg = U_ptr[i], end = U_ptr[i+1];
for (t = beg; t < end; t++)
x[U_ind[t]] -= U_val[t] * temp;
}
return;
}
/* eof */