You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

275 lines
15 KiB

/*
* MarkovAutomaton.h
*
* Created on: 07.11.2013
* Author: Christian Dehnert
*/
#ifndef STORM_MODELS_MA_H_
#define STORM_MODELS_MA_H_
#include "AbstractNondeterministicModel.h"
#include "AtomicPropositionsLabeling.h"
#include "src/storage/SparseMatrix.h"
#include "src/exceptions/InvalidArgumentException.h"
#include "src/settings/Settings.h"
#include "src/utility/vector.h"
#include "src/utility/matrix.h"
namespace storm {
namespace models {
template <class T>
class MarkovAutomaton : public storm::models::AbstractNondeterministicModel<T> {
public:
MarkovAutomaton(storm::storage::SparseMatrix<T> const& transitionMatrix, storm::models::AtomicPropositionsLabeling const& stateLabeling,
storm::storage::BitVector const& markovianStates, std::vector<T> const& exitRates,
boost::optional<std::vector<T>> const& optionalStateRewardVector, boost::optional<storm::storage::SparseMatrix<T>> const& optionalTransitionRewardMatrix,
boost::optional<std::vector<boost::container::flat_set<uint_fast64_t>>> const& optionalChoiceLabeling)
: AbstractNondeterministicModel<T>(transitionMatrix, stateLabeling, optionalStateRewardVector, optionalTransitionRewardMatrix, optionalChoiceLabeling),
markovianStates(markovianStates), exitRates(exitRates), closed(false) {
this->turnRatesToProbabilities();
if (this->hasTransitionRewards()) {
if (!this->getTransitionRewardMatrix().isSubmatrixOf(this->getTransitionMatrix())) {
LOG4CPLUS_ERROR(logger, "Transition reward matrix is not a submatrix of the transition matrix, i.e. there are rewards for transitions that do not exist.");
throw storm::exceptions::InvalidArgumentException() << "There are transition rewards for nonexistent transitions.";
}
}
}
MarkovAutomaton(storm::storage::SparseMatrix<T>&& transitionMatrix,
storm::models::AtomicPropositionsLabeling&& stateLabeling,
storm::storage::BitVector const& markovianStates, std::vector<T> const& exitRates,
boost::optional<std::vector<T>>&& optionalStateRewardVector,
boost::optional<storm::storage::SparseMatrix<T>>&& optionalTransitionRewardMatrix,
boost::optional<std::vector<boost::container::flat_set<uint_fast64_t>>>&& optionalChoiceLabeling)
: AbstractNondeterministicModel<T>(std::move(transitionMatrix), std::move(stateLabeling), std::move(optionalStateRewardVector), std::move(optionalTransitionRewardMatrix),
std::move(optionalChoiceLabeling)), markovianStates(markovianStates), exitRates(std::move(exitRates)), closed(false) {
this->turnRatesToProbabilities();
if (this->hasTransitionRewards()) {
if (!this->getTransitionRewardMatrix().isSubmatrixOf(this->getTransitionMatrix())) {
LOG4CPLUS_ERROR(logger, "Transition reward matrix is not a submatrix of the transition matrix, i.e. there are rewards for transitions that do not exist.");
throw storm::exceptions::InvalidArgumentException() << "There are transition rewards for nonexistent transitions.";
}
}
}
MarkovAutomaton(MarkovAutomaton<T> const& markovAutomaton) : AbstractNondeterministicModel<T>(markovAutomaton), markovianStates(markovAutomaton.markovianStates), exitRates(markovAutomaton.exitRates), closed(markovAutomaton.closed) {
// Intentionally left empty.
}
MarkovAutomaton(MarkovAutomaton<T>&& markovAutomaton) : AbstractNondeterministicModel<T>(std::move(markovAutomaton)), markovianStates(std::move(markovAutomaton.markovianStates)), exitRates(std::move(markovAutomaton.exitRates)), closed(markovAutomaton.closed) {
// Intentionally left empty.
}
~MarkovAutomaton() {
// Intentionally left empty.
}
storm::models::ModelType getType() const {
return MA;
}
bool isClosed() const {
return closed;
}
bool isHybridState(uint_fast64_t state) const {
return isMarkovianState(state) && (this->getTransitionMatrix().getRowGroupSize(state) > 1);
}
bool isMarkovianState(uint_fast64_t state) const {
return this->markovianStates.get(state);
}
bool isProbabilisticState(uint_fast64_t state) const {
return !this->markovianStates.get(state);
}
std::vector<T> const& getExitRates() const {
return this->exitRates;
}
T const& getExitRate(uint_fast64_t state) const {
return this->exitRates[state];
}
T getMaximalExitRate() const {
T result = storm::utility::constantZero<T>();
for (auto markovianState : this->markovianStates) {
result = std::max(result, this->exitRates[markovianState]);
}
return result;
}
storm::storage::BitVector const& getMarkovianStates() const {
return this->markovianStates;
}
void close() {
if (!closed) {
// First, count the number of hybrid states to know how many Markovian choices
// will be removed.
uint_fast64_t numberOfHybridStates = 0;
for (uint_fast64_t state = 0; state < this->getNumberOfStates(); ++state) {
if (this->isHybridState(state)) {
++numberOfHybridStates;
}
}
// Then compute how many rows the new matrix is going to have.
uint_fast64_t newNumberOfRows = this->getNumberOfChoices() - numberOfHybridStates;
// Create the matrix for the new transition relation and the corresponding nondeterministic choice vector.
storm::storage::SparseMatrixBuilder<T> newTransitionMatrixBuilder(0, 0, 0, true, this->getNumberOfStates() + 1);
// Now copy over all choices that need to be kept.
uint_fast64_t currentChoice = 0;
for (uint_fast64_t state = 0; state < this->getNumberOfStates(); ++state) {
// If the state is a hybrid state, closing it will make it a probabilistic state, so we remove the Markovian marking.
if (this->isHybridState(state)) {
this->markovianStates.set(state, false);
}
// Record the new beginning of choices of this state.
newTransitionMatrixBuilder.newRowGroup(currentChoice);
// If we are currently treating a hybrid state, we need to skip its first choice.
if (this->isHybridState(state)) {
// Remove the Markovian state marking.
this->markovianStates.set(state, false);
}
for (uint_fast64_t row = this->getTransitionMatrix().getRowGroupIndices()[state] + (this->isHybridState(state) ? 1 : 0); row < this->getTransitionMatrix().getRowGroupIndices()[state + 1]; ++row) {
for (auto const& entry : this->transitionMatrix.getRow(row)) {
newTransitionMatrixBuilder.addNextValue(currentChoice, entry.first, entry.second);
}
++currentChoice;
}
}
// Finalize the matrix and put the new transition data in place.
this->transitionMatrix = newTransitionMatrixBuilder.build();
// Mark the automaton as closed.
closed = true;
}
}
virtual std::shared_ptr<AbstractModel<T>> applyScheduler(storm::storage::Scheduler const& scheduler) const override {
if (!closed) {
throw storm::exceptions::InvalidStateException() << "Applying a scheduler to a non-closed Markov automaton is illegal; it needs to be closed first.";
}
storm::storage::SparseMatrix<T> newTransitionMatrix = storm::utility::matrix::applyScheduler(this->getTransitionMatrix(), scheduler);
return std::shared_ptr<AbstractModel<T>>(new MarkovAutomaton(newTransitionMatrix, this->getStateLabeling(), markovianStates, exitRates, this->hasStateRewards() ? this->getStateRewardVector() : boost::optional<std::vector<T>>(), this->hasTransitionRewards() ? this->getTransitionRewardMatrix() : boost::optional<storm::storage::SparseMatrix<T>>(), this->hasChoiceLabeling() ? this->getChoiceLabeling() : boost::optional<std::vector<boost::container::flat_set<uint_fast64_t>>>()));
}
virtual void writeDotToStream(std::ostream& outStream, bool includeLabeling = true, storm::storage::BitVector const* subsystem = nullptr, std::vector<T> const* firstValue = nullptr, std::vector<T> const* secondValue = nullptr, std::vector<uint_fast64_t> const* stateColoring = nullptr, std::vector<std::string> const* colors = nullptr, std::vector<uint_fast64_t>* scheduler = nullptr, bool finalizeOutput = true) const override {
AbstractModel<T>::writeDotToStream(outStream, includeLabeling, subsystem, firstValue, secondValue, stateColoring, colors, scheduler, false);
// Write the probability distributions for all the states.
for (uint_fast64_t state = 0; state < this->getNumberOfStates(); ++state) {
uint_fast64_t rowCount = this->getTransitionMatrix().getRowGroupIndices()[state + 1] - this->getTransitionMatrix().getRowGroupIndices()[state];
bool highlightChoice = true;
// For this, we need to iterate over all available nondeterministic choices in the current state.
for (uint_fast64_t choice = 0; choice < rowCount; ++choice) {
typename storm::storage::SparseMatrix<T>::const_rows row = this->transitionMatrix.getRow(this->getTransitionMatrix().getRowGroupIndices()[state] + choice);
if (scheduler != nullptr) {
// If the scheduler picked the current choice, we will not make it dotted, but highlight it.
if ((*scheduler)[state] == choice) {
highlightChoice = true;
} else {
highlightChoice = false;
}
}
// If it's not a Markovian state or the current row is the first choice for this state, then we
// are dealing with a probabilitic choice.
if (!markovianStates.get(state) || choice != 0) {
// For each nondeterministic choice, we draw an arrow to an intermediate node to better display
// the grouping of transitions.
outStream << "\t\"" << state << "c" << choice << "\" [shape = \"point\"";
// If we were given a scheduler to highlight, we do so now.
if (scheduler != nullptr) {
if (highlightChoice) {
outStream << ", fillcolor=\"red\"";
}
}
outStream << "];" << std::endl;
outStream << "\t" << state << " -> \"" << state << "c" << choice << "\"";
// If we were given a scheduler to highlight, we do so now.
if (scheduler != nullptr) {
if (highlightChoice) {
outStream << " [color=\"red\", penwidth = 2]";
} else {
outStream << " [style = \"dotted\"]";
}
}
outStream << ";" << std::endl;
// Now draw all probabilitic arcs that belong to this nondeterminstic choice.
for (auto const& transition : row) {
if (subsystem == nullptr || subsystem->get(transition.first)) {
outStream << "\t\"" << state << "c" << choice << "\" -> " << transition.first << " [ label= \"" << transition.second << "\" ]";
// If we were given a scheduler to highlight, we do so now.
if (scheduler != nullptr) {
if (highlightChoice) {
outStream << " [color=\"red\", penwidth = 2]";
} else {
outStream << " [style = \"dotted\"]";
}
}
outStream << ";" << std::endl;
}
}
} else {
// In this case we are emitting a Markovian choice, so draw the arrows directly to the target states.
for (auto const& transition : row) {
if (subsystem == nullptr || subsystem->get(transition.first)) {
outStream << "\t\"" << state << "\" -> " << transition.first << " [ label= \"" << transition.second << " (" << this->exitRates[state] << ")\" ]";
}
}
}
}
}
if (finalizeOutput) {
outStream << "}" << std::endl;
}
}
private:
/*!
* Under the assumption that the Markovian choices of this Markov automaton are expressed in terms of rates in the transition matrix, this procedure turns
* the rates into the corresponding probabilities by dividing each entry by the exit rate of the state.
*/
void turnRatesToProbabilities() {
for (auto state : this->markovianStates) {
for (auto& transition : this->transitionMatrix.getRowGroup(state)) {
transition.second /= this->exitRates[state];
}
}
}
storm::storage::BitVector markovianStates;
std::vector<T> exitRates;
bool closed;
};
}
}
#endif /* STORM_MODELS_MA_H_ */