You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							310 lines
						
					
					
						
							9.6 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							310 lines
						
					
					
						
							9.6 KiB
						
					
					
				
								      SUBROUTINE CHBMV(UPLO,N,K,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)
							 | 
						|
								*     .. Scalar Arguments ..
							 | 
						|
								      COMPLEX ALPHA,BETA
							 | 
						|
								      INTEGER INCX,INCY,K,LDA,N
							 | 
						|
								      CHARACTER UPLO
							 | 
						|
								*     ..
							 | 
						|
								*     .. Array Arguments ..
							 | 
						|
								      COMPLEX A(LDA,*),X(*),Y(*)
							 | 
						|
								*     ..
							 | 
						|
								*
							 | 
						|
								*  Purpose
							 | 
						|
								*  =======
							 | 
						|
								*
							 | 
						|
								*  CHBMV  performs the matrix-vector  operation
							 | 
						|
								*
							 | 
						|
								*     y := alpha*A*x + beta*y,
							 | 
						|
								*
							 | 
						|
								*  where alpha and beta are scalars, x and y are n element vectors and
							 | 
						|
								*  A is an n by n hermitian band matrix, with k super-diagonals.
							 | 
						|
								*
							 | 
						|
								*  Arguments
							 | 
						|
								*  ==========
							 | 
						|
								*
							 | 
						|
								*  UPLO   - CHARACTER*1.
							 | 
						|
								*           On entry, UPLO specifies whether the upper or lower
							 | 
						|
								*           triangular part of the band matrix A is being supplied as
							 | 
						|
								*           follows:
							 | 
						|
								*
							 | 
						|
								*              UPLO = 'U' or 'u'   The upper triangular part of A is
							 | 
						|
								*                                  being supplied.
							 | 
						|
								*
							 | 
						|
								*              UPLO = 'L' or 'l'   The lower triangular part of A is
							 | 
						|
								*                                  being supplied.
							 | 
						|
								*
							 | 
						|
								*           Unchanged on exit.
							 | 
						|
								*
							 | 
						|
								*  N      - INTEGER.
							 | 
						|
								*           On entry, N specifies the order of the matrix A.
							 | 
						|
								*           N must be at least zero.
							 | 
						|
								*           Unchanged on exit.
							 | 
						|
								*
							 | 
						|
								*  K      - INTEGER.
							 | 
						|
								*           On entry, K specifies the number of super-diagonals of the
							 | 
						|
								*           matrix A. K must satisfy  0 .le. K.
							 | 
						|
								*           Unchanged on exit.
							 | 
						|
								*
							 | 
						|
								*  ALPHA  - COMPLEX         .
							 | 
						|
								*           On entry, ALPHA specifies the scalar alpha.
							 | 
						|
								*           Unchanged on exit.
							 | 
						|
								*
							 | 
						|
								*  A      - COMPLEX          array of DIMENSION ( LDA, n ).
							 | 
						|
								*           Before entry with UPLO = 'U' or 'u', the leading ( k + 1 )
							 | 
						|
								*           by n part of the array A must contain the upper triangular
							 | 
						|
								*           band part of the hermitian matrix, supplied column by
							 | 
						|
								*           column, with the leading diagonal of the matrix in row
							 | 
						|
								*           ( k + 1 ) of the array, the first super-diagonal starting at
							 | 
						|
								*           position 2 in row k, and so on. The top left k by k triangle
							 | 
						|
								*           of the array A is not referenced.
							 | 
						|
								*           The following program segment will transfer the upper
							 | 
						|
								*           triangular part of a hermitian band matrix from conventional
							 | 
						|
								*           full matrix storage to band storage:
							 | 
						|
								*
							 | 
						|
								*                 DO 20, J = 1, N
							 | 
						|
								*                    M = K + 1 - J
							 | 
						|
								*                    DO 10, I = MAX( 1, J - K ), J
							 | 
						|
								*                       A( M + I, J ) = matrix( I, J )
							 | 
						|
								*              10    CONTINUE
							 | 
						|
								*              20 CONTINUE
							 | 
						|
								*
							 | 
						|
								*           Before entry with UPLO = 'L' or 'l', the leading ( k + 1 )
							 | 
						|
								*           by n part of the array A must contain the lower triangular
							 | 
						|
								*           band part of the hermitian matrix, supplied column by
							 | 
						|
								*           column, with the leading diagonal of the matrix in row 1 of
							 | 
						|
								*           the array, the first sub-diagonal starting at position 1 in
							 | 
						|
								*           row 2, and so on. The bottom right k by k triangle of the
							 | 
						|
								*           array A is not referenced.
							 | 
						|
								*           The following program segment will transfer the lower
							 | 
						|
								*           triangular part of a hermitian band matrix from conventional
							 | 
						|
								*           full matrix storage to band storage:
							 | 
						|
								*
							 | 
						|
								*                 DO 20, J = 1, N
							 | 
						|
								*                    M = 1 - J
							 | 
						|
								*                    DO 10, I = J, MIN( N, J + K )
							 | 
						|
								*                       A( M + I, J ) = matrix( I, J )
							 | 
						|
								*              10    CONTINUE
							 | 
						|
								*              20 CONTINUE
							 | 
						|
								*
							 | 
						|
								*           Note that the imaginary parts of the diagonal elements need
							 | 
						|
								*           not be set and are assumed to be zero.
							 | 
						|
								*           Unchanged on exit.
							 | 
						|
								*
							 | 
						|
								*  LDA    - INTEGER.
							 | 
						|
								*           On entry, LDA specifies the first dimension of A as declared
							 | 
						|
								*           in the calling (sub) program. LDA must be at least
							 | 
						|
								*           ( k + 1 ).
							 | 
						|
								*           Unchanged on exit.
							 | 
						|
								*
							 | 
						|
								*  X      - COMPLEX          array of DIMENSION at least
							 | 
						|
								*           ( 1 + ( n - 1 )*abs( INCX ) ).
							 | 
						|
								*           Before entry, the incremented array X must contain the
							 | 
						|
								*           vector x.
							 | 
						|
								*           Unchanged on exit.
							 | 
						|
								*
							 | 
						|
								*  INCX   - INTEGER.
							 | 
						|
								*           On entry, INCX specifies the increment for the elements of
							 | 
						|
								*           X. INCX must not be zero.
							 | 
						|
								*           Unchanged on exit.
							 | 
						|
								*
							 | 
						|
								*  BETA   - COMPLEX         .
							 | 
						|
								*           On entry, BETA specifies the scalar beta.
							 | 
						|
								*           Unchanged on exit.
							 | 
						|
								*
							 | 
						|
								*  Y      - COMPLEX          array of DIMENSION at least
							 | 
						|
								*           ( 1 + ( n - 1 )*abs( INCY ) ).
							 | 
						|
								*           Before entry, the incremented array Y must contain the
							 | 
						|
								*           vector y. On exit, Y is overwritten by the updated vector y.
							 | 
						|
								*
							 | 
						|
								*  INCY   - INTEGER.
							 | 
						|
								*           On entry, INCY specifies the increment for the elements of
							 | 
						|
								*           Y. INCY must not be zero.
							 | 
						|
								*           Unchanged on exit.
							 | 
						|
								*
							 | 
						|
								*  Further Details
							 | 
						|
								*  ===============
							 | 
						|
								*
							 | 
						|
								*  Level 2 Blas routine.
							 | 
						|
								*
							 | 
						|
								*  -- Written on 22-October-1986.
							 | 
						|
								*     Jack Dongarra, Argonne National Lab.
							 | 
						|
								*     Jeremy Du Croz, Nag Central Office.
							 | 
						|
								*     Sven Hammarling, Nag Central Office.
							 | 
						|
								*     Richard Hanson, Sandia National Labs.
							 | 
						|
								*
							 | 
						|
								*  =====================================================================
							 | 
						|
								*
							 | 
						|
								*     .. Parameters ..
							 | 
						|
								      COMPLEX ONE
							 | 
						|
								      PARAMETER (ONE= (1.0E+0,0.0E+0))
							 | 
						|
								      COMPLEX ZERO
							 | 
						|
								      PARAMETER (ZERO= (0.0E+0,0.0E+0))
							 | 
						|
								*     ..
							 | 
						|
								*     .. Local Scalars ..
							 | 
						|
								      COMPLEX TEMP1,TEMP2
							 | 
						|
								      INTEGER I,INFO,IX,IY,J,JX,JY,KPLUS1,KX,KY,L
							 | 
						|
								*     ..
							 | 
						|
								*     .. External Functions ..
							 | 
						|
								      LOGICAL LSAME
							 | 
						|
								      EXTERNAL LSAME
							 | 
						|
								*     ..
							 | 
						|
								*     .. External Subroutines ..
							 | 
						|
								      EXTERNAL XERBLA
							 | 
						|
								*     ..
							 | 
						|
								*     .. Intrinsic Functions ..
							 | 
						|
								      INTRINSIC CONJG,MAX,MIN,REAL
							 | 
						|
								*     ..
							 | 
						|
								*
							 | 
						|
								*     Test the input parameters.
							 | 
						|
								*
							 | 
						|
								      INFO = 0
							 | 
						|
								      IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
							 | 
						|
								          INFO = 1
							 | 
						|
								      ELSE IF (N.LT.0) THEN
							 | 
						|
								          INFO = 2
							 | 
						|
								      ELSE IF (K.LT.0) THEN
							 | 
						|
								          INFO = 3
							 | 
						|
								      ELSE IF (LDA.LT. (K+1)) THEN
							 | 
						|
								          INFO = 6
							 | 
						|
								      ELSE IF (INCX.EQ.0) THEN
							 | 
						|
								          INFO = 8
							 | 
						|
								      ELSE IF (INCY.EQ.0) THEN
							 | 
						|
								          INFO = 11
							 | 
						|
								      END IF
							 | 
						|
								      IF (INFO.NE.0) THEN
							 | 
						|
								          CALL XERBLA('CHBMV ',INFO)
							 | 
						|
								          RETURN
							 | 
						|
								      END IF
							 | 
						|
								*
							 | 
						|
								*     Quick return if possible.
							 | 
						|
								*
							 | 
						|
								      IF ((N.EQ.0) .OR. ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN
							 | 
						|
								*
							 | 
						|
								*     Set up the start points in  X  and  Y.
							 | 
						|
								*
							 | 
						|
								      IF (INCX.GT.0) THEN
							 | 
						|
								          KX = 1
							 | 
						|
								      ELSE
							 | 
						|
								          KX = 1 - (N-1)*INCX
							 | 
						|
								      END IF
							 | 
						|
								      IF (INCY.GT.0) THEN
							 | 
						|
								          KY = 1
							 | 
						|
								      ELSE
							 | 
						|
								          KY = 1 - (N-1)*INCY
							 | 
						|
								      END IF
							 | 
						|
								*
							 | 
						|
								*     Start the operations. In this version the elements of the array A
							 | 
						|
								*     are accessed sequentially with one pass through A.
							 | 
						|
								*
							 | 
						|
								*     First form  y := beta*y.
							 | 
						|
								*
							 | 
						|
								      IF (BETA.NE.ONE) THEN
							 | 
						|
								          IF (INCY.EQ.1) THEN
							 | 
						|
								              IF (BETA.EQ.ZERO) THEN
							 | 
						|
								                  DO 10 I = 1,N
							 | 
						|
								                      Y(I) = ZERO
							 | 
						|
								   10             CONTINUE
							 | 
						|
								              ELSE
							 | 
						|
								                  DO 20 I = 1,N
							 | 
						|
								                      Y(I) = BETA*Y(I)
							 | 
						|
								   20             CONTINUE
							 | 
						|
								              END IF
							 | 
						|
								          ELSE
							 | 
						|
								              IY = KY
							 | 
						|
								              IF (BETA.EQ.ZERO) THEN
							 | 
						|
								                  DO 30 I = 1,N
							 | 
						|
								                      Y(IY) = ZERO
							 | 
						|
								                      IY = IY + INCY
							 | 
						|
								   30             CONTINUE
							 | 
						|
								              ELSE
							 | 
						|
								                  DO 40 I = 1,N
							 | 
						|
								                      Y(IY) = BETA*Y(IY)
							 | 
						|
								                      IY = IY + INCY
							 | 
						|
								   40             CONTINUE
							 | 
						|
								              END IF
							 | 
						|
								          END IF
							 | 
						|
								      END IF
							 | 
						|
								      IF (ALPHA.EQ.ZERO) RETURN
							 | 
						|
								      IF (LSAME(UPLO,'U')) THEN
							 | 
						|
								*
							 | 
						|
								*        Form  y  when upper triangle of A is stored.
							 | 
						|
								*
							 | 
						|
								          KPLUS1 = K + 1
							 | 
						|
								          IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
							 | 
						|
								              DO 60 J = 1,N
							 | 
						|
								                  TEMP1 = ALPHA*X(J)
							 | 
						|
								                  TEMP2 = ZERO
							 | 
						|
								                  L = KPLUS1 - J
							 | 
						|
								                  DO 50 I = MAX(1,J-K),J - 1
							 | 
						|
								                      Y(I) = Y(I) + TEMP1*A(L+I,J)
							 | 
						|
								                      TEMP2 = TEMP2 + CONJG(A(L+I,J))*X(I)
							 | 
						|
								   50             CONTINUE
							 | 
						|
								                  Y(J) = Y(J) + TEMP1*REAL(A(KPLUS1,J)) + ALPHA*TEMP2
							 | 
						|
								   60         CONTINUE
							 | 
						|
								          ELSE
							 | 
						|
								              JX = KX
							 | 
						|
								              JY = KY
							 | 
						|
								              DO 80 J = 1,N
							 | 
						|
								                  TEMP1 = ALPHA*X(JX)
							 | 
						|
								                  TEMP2 = ZERO
							 | 
						|
								                  IX = KX
							 | 
						|
								                  IY = KY
							 | 
						|
								                  L = KPLUS1 - J
							 | 
						|
								                  DO 70 I = MAX(1,J-K),J - 1
							 | 
						|
								                      Y(IY) = Y(IY) + TEMP1*A(L+I,J)
							 | 
						|
								                      TEMP2 = TEMP2 + CONJG(A(L+I,J))*X(IX)
							 | 
						|
								                      IX = IX + INCX
							 | 
						|
								                      IY = IY + INCY
							 | 
						|
								   70             CONTINUE
							 | 
						|
								                  Y(JY) = Y(JY) + TEMP1*REAL(A(KPLUS1,J)) + ALPHA*TEMP2
							 | 
						|
								                  JX = JX + INCX
							 | 
						|
								                  JY = JY + INCY
							 | 
						|
								                  IF (J.GT.K) THEN
							 | 
						|
								                      KX = KX + INCX
							 | 
						|
								                      KY = KY + INCY
							 | 
						|
								                  END IF
							 | 
						|
								   80         CONTINUE
							 | 
						|
								          END IF
							 | 
						|
								      ELSE
							 | 
						|
								*
							 | 
						|
								*        Form  y  when lower triangle of A is stored.
							 | 
						|
								*
							 | 
						|
								          IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
							 | 
						|
								              DO 100 J = 1,N
							 | 
						|
								                  TEMP1 = ALPHA*X(J)
							 | 
						|
								                  TEMP2 = ZERO
							 | 
						|
								                  Y(J) = Y(J) + TEMP1*REAL(A(1,J))
							 | 
						|
								                  L = 1 - J
							 | 
						|
								                  DO 90 I = J + 1,MIN(N,J+K)
							 | 
						|
								                      Y(I) = Y(I) + TEMP1*A(L+I,J)
							 | 
						|
								                      TEMP2 = TEMP2 + CONJG(A(L+I,J))*X(I)
							 | 
						|
								   90             CONTINUE
							 | 
						|
								                  Y(J) = Y(J) + ALPHA*TEMP2
							 | 
						|
								  100         CONTINUE
							 | 
						|
								          ELSE
							 | 
						|
								              JX = KX
							 | 
						|
								              JY = KY
							 | 
						|
								              DO 120 J = 1,N
							 | 
						|
								                  TEMP1 = ALPHA*X(JX)
							 | 
						|
								                  TEMP2 = ZERO
							 | 
						|
								                  Y(JY) = Y(JY) + TEMP1*REAL(A(1,J))
							 | 
						|
								                  L = 1 - J
							 | 
						|
								                  IX = JX
							 | 
						|
								                  IY = JY
							 | 
						|
								                  DO 110 I = J + 1,MIN(N,J+K)
							 | 
						|
								                      IX = IX + INCX
							 | 
						|
								                      IY = IY + INCY
							 | 
						|
								                      Y(IY) = Y(IY) + TEMP1*A(L+I,J)
							 | 
						|
								                      TEMP2 = TEMP2 + CONJG(A(L+I,J))*X(IX)
							 | 
						|
								  110             CONTINUE
							 | 
						|
								                  Y(JY) = Y(JY) + ALPHA*TEMP2
							 | 
						|
								                  JX = JX + INCX
							 | 
						|
								                  JY = JY + INCY
							 | 
						|
								  120         CONTINUE
							 | 
						|
								          END IF
							 | 
						|
								      END IF
							 | 
						|
								*
							 | 
						|
								      RETURN
							 | 
						|
								*
							 | 
						|
								*     End of CHBMV .
							 | 
						|
								*
							 | 
						|
								      END
							 |