You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

1144 lines
38 KiB

/* glpipm.c */
/***********************************************************************
* This code is part of GLPK (GNU Linear Programming Kit).
*
* Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
* 2009, 2010, 2011, 2013 Andrew Makhorin, Department for Applied
* Informatics, Moscow Aviation Institute, Moscow, Russia. All rights
* reserved. E-mail: <mao@gnu.org>.
*
* GLPK is free software: you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GLPK is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
* License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GLPK. If not, see <http://www.gnu.org/licenses/>.
***********************************************************************/
#include "env.h"
#include "glpipm.h"
#include "glpmat.h"
#define ITER_MAX 100
/* maximal number of iterations */
struct csa
{ /* common storage area */
/*--------------------------------------------------------------*/
/* LP data */
int m;
/* number of rows (equality constraints) */
int n;
/* number of columns (structural variables) */
int *A_ptr; /* int A_ptr[1+m+1]; */
int *A_ind; /* int A_ind[A_ptr[m+1]]; */
double *A_val; /* double A_val[A_ptr[m+1]]; */
/* mxn-matrix A in storage-by-rows format */
double *b; /* double b[1+m]; */
/* m-vector b of right-hand sides */
double *c; /* double c[1+n]; */
/* n-vector c of objective coefficients; c[0] is constant term of
the objective function */
/*--------------------------------------------------------------*/
/* LP solution */
double *x; /* double x[1+n]; */
double *y; /* double y[1+m]; */
double *z; /* double z[1+n]; */
/* current point in primal-dual space; the best point on exit */
/*--------------------------------------------------------------*/
/* control parameters */
const glp_iptcp *parm;
/*--------------------------------------------------------------*/
/* working arrays and variables */
double *D; /* double D[1+n]; */
/* diagonal nxn-matrix D = X*inv(Z), where X = diag(x[j]) and
Z = diag(z[j]) */
int *P; /* int P[1+m+m]; */
/* permutation mxm-matrix P used to minimize fill-in in Cholesky
factorization */
int *S_ptr; /* int S_ptr[1+m+1]; */
int *S_ind; /* int S_ind[S_ptr[m+1]]; */
double *S_val; /* double S_val[S_ptr[m+1]]; */
double *S_diag; /* double S_diag[1+m]; */
/* symmetric mxm-matrix S = P*A*D*A'*P' whose upper triangular
part without diagonal elements is stored in S_ptr, S_ind, and
S_val in storage-by-rows format, diagonal elements are stored
in S_diag */
int *U_ptr; /* int U_ptr[1+m+1]; */
int *U_ind; /* int U_ind[U_ptr[m+1]]; */
double *U_val; /* double U_val[U_ptr[m+1]]; */
double *U_diag; /* double U_diag[1+m]; */
/* upper triangular mxm-matrix U defining Cholesky factorization
S = U'*U; its non-diagonal elements are stored in U_ptr, U_ind,
U_val in storage-by-rows format, diagonal elements are stored
in U_diag */
int iter;
/* iteration number (0, 1, 2, ...); iter = 0 corresponds to the
initial point */
double obj;
/* current value of the objective function */
double rpi;
/* relative primal infeasibility rpi = ||A*x-b||/(1+||b||) */
double rdi;
/* relative dual infeasibility rdi = ||A'*y+z-c||/(1+||c||) */
double gap;
/* primal-dual gap = |c'*x-b'*y|/(1+|c'*x|) which is a relative
difference between primal and dual objective functions */
double phi;
/* merit function phi = ||A*x-b||/max(1,||b||) +
+ ||A'*y+z-c||/max(1,||c||) +
+ |c'*x-b'*y|/max(1,||b||,||c||) */
double mu;
/* duality measure mu = x'*z/n (used as barrier parameter) */
double rmu;
/* rmu = max(||A*x-b||,||A'*y+z-c||)/mu */
double rmu0;
/* the initial value of rmu on iteration 0 */
double *phi_min; /* double phi_min[1+ITER_MAX]; */
/* phi_min[k] = min(phi[k]), where phi[k] is the value of phi on
k-th iteration, 0 <= k <= iter */
int best_iter;
/* iteration number, on which the value of phi reached its best
(minimal) value */
double *best_x; /* double best_x[1+n]; */
double *best_y; /* double best_y[1+m]; */
double *best_z; /* double best_z[1+n]; */
/* best point (in the sense of the merit function phi) which has
been reached on iteration iter_best */
double best_obj;
/* objective value at the best point */
double *dx_aff; /* double dx_aff[1+n]; */
double *dy_aff; /* double dy_aff[1+m]; */
double *dz_aff; /* double dz_aff[1+n]; */
/* affine scaling direction */
double alfa_aff_p, alfa_aff_d;
/* maximal primal and dual stepsizes in affine scaling direction,
on which x and z are still non-negative */
double mu_aff;
/* duality measure mu_aff = x_aff'*z_aff/n in the boundary point
x_aff' = x+alfa_aff_p*dx_aff, z_aff' = z+alfa_aff_d*dz_aff */
double sigma;
/* Mehrotra's heuristic parameter (0 <= sigma <= 1) */
double *dx_cc; /* double dx_cc[1+n]; */
double *dy_cc; /* double dy_cc[1+m]; */
double *dz_cc; /* double dz_cc[1+n]; */
/* centering corrector direction */
double *dx; /* double dx[1+n]; */
double *dy; /* double dy[1+m]; */
double *dz; /* double dz[1+n]; */
/* final combined direction dx = dx_aff+dx_cc, dy = dy_aff+dy_cc,
dz = dz_aff+dz_cc */
double alfa_max_p;
double alfa_max_d;
/* maximal primal and dual stepsizes in combined direction, on
which x and z are still non-negative */
};
/***********************************************************************
* initialize - allocate and initialize common storage area
*
* This routine allocates and initializes the common storage area (CSA)
* used by interior-point method routines. */
static void initialize(struct csa *csa)
{ int m = csa->m;
int n = csa->n;
int i;
if (csa->parm->msg_lev >= GLP_MSG_ALL)
xprintf("Matrix A has %d non-zeros\n", csa->A_ptr[m+1]-1);
csa->D = xcalloc(1+n, sizeof(double));
/* P := I */
csa->P = xcalloc(1+m+m, sizeof(int));
for (i = 1; i <= m; i++) csa->P[i] = csa->P[m+i] = i;
/* S := A*A', symbolically */
csa->S_ptr = xcalloc(1+m+1, sizeof(int));
csa->S_ind = adat_symbolic(m, n, csa->P, csa->A_ptr, csa->A_ind,
csa->S_ptr);
if (csa->parm->msg_lev >= GLP_MSG_ALL)
xprintf("Matrix S = A*A' has %d non-zeros (upper triangle)\n",
csa->S_ptr[m+1]-1 + m);
/* determine P using specified ordering algorithm */
if (csa->parm->ord_alg == GLP_ORD_NONE)
{ if (csa->parm->msg_lev >= GLP_MSG_ALL)
xprintf("Original ordering is being used\n");
for (i = 1; i <= m; i++)
csa->P[i] = csa->P[m+i] = i;
}
else if (csa->parm->ord_alg == GLP_ORD_QMD)
{ if (csa->parm->msg_lev >= GLP_MSG_ALL)
xprintf("Minimum degree ordering (QMD)...\n");
min_degree(m, csa->S_ptr, csa->S_ind, csa->P);
}
else if (csa->parm->ord_alg == GLP_ORD_AMD)
{ if (csa->parm->msg_lev >= GLP_MSG_ALL)
xprintf("Approximate minimum degree ordering (AMD)...\n");
amd_order1(m, csa->S_ptr, csa->S_ind, csa->P);
}
else if (csa->parm->ord_alg == GLP_ORD_SYMAMD)
{ if (csa->parm->msg_lev >= GLP_MSG_ALL)
xprintf("Approximate minimum degree ordering (SYMAMD)...\n")
;
symamd_ord(m, csa->S_ptr, csa->S_ind, csa->P);
}
else
xassert(csa != csa);
/* S := P*A*A'*P', symbolically */
xfree(csa->S_ind);
csa->S_ind = adat_symbolic(m, n, csa->P, csa->A_ptr, csa->A_ind,
csa->S_ptr);
csa->S_val = xcalloc(csa->S_ptr[m+1], sizeof(double));
csa->S_diag = xcalloc(1+m, sizeof(double));
/* compute Cholesky factorization S = U'*U, symbolically */
if (csa->parm->msg_lev >= GLP_MSG_ALL)
xprintf("Computing Cholesky factorization S = L*L'...\n");
csa->U_ptr = xcalloc(1+m+1, sizeof(int));
csa->U_ind = chol_symbolic(m, csa->S_ptr, csa->S_ind, csa->U_ptr);
if (csa->parm->msg_lev >= GLP_MSG_ALL)
xprintf("Matrix L has %d non-zeros\n", csa->U_ptr[m+1]-1 + m);
csa->U_val = xcalloc(csa->U_ptr[m+1], sizeof(double));
csa->U_diag = xcalloc(1+m, sizeof(double));
csa->iter = 0;
csa->obj = 0.0;
csa->rpi = 0.0;
csa->rdi = 0.0;
csa->gap = 0.0;
csa->phi = 0.0;
csa->mu = 0.0;
csa->rmu = 0.0;
csa->rmu0 = 0.0;
csa->phi_min = xcalloc(1+ITER_MAX, sizeof(double));
csa->best_iter = 0;
csa->best_x = xcalloc(1+n, sizeof(double));
csa->best_y = xcalloc(1+m, sizeof(double));
csa->best_z = xcalloc(1+n, sizeof(double));
csa->best_obj = 0.0;
csa->dx_aff = xcalloc(1+n, sizeof(double));
csa->dy_aff = xcalloc(1+m, sizeof(double));
csa->dz_aff = xcalloc(1+n, sizeof(double));
csa->alfa_aff_p = 0.0;
csa->alfa_aff_d = 0.0;
csa->mu_aff = 0.0;
csa->sigma = 0.0;
csa->dx_cc = xcalloc(1+n, sizeof(double));
csa->dy_cc = xcalloc(1+m, sizeof(double));
csa->dz_cc = xcalloc(1+n, sizeof(double));
csa->dx = csa->dx_aff;
csa->dy = csa->dy_aff;
csa->dz = csa->dz_aff;
csa->alfa_max_p = 0.0;
csa->alfa_max_d = 0.0;
return;
}
/***********************************************************************
* A_by_vec - compute y = A*x
*
* This routine computes matrix-vector product y = A*x, where A is the
* constraint matrix. */
static void A_by_vec(struct csa *csa, double x[], double y[])
{ /* compute y = A*x */
int m = csa->m;
int *A_ptr = csa->A_ptr;
int *A_ind = csa->A_ind;
double *A_val = csa->A_val;
int i, t, beg, end;
double temp;
for (i = 1; i <= m; i++)
{ temp = 0.0;
beg = A_ptr[i], end = A_ptr[i+1];
for (t = beg; t < end; t++) temp += A_val[t] * x[A_ind[t]];
y[i] = temp;
}
return;
}
/***********************************************************************
* AT_by_vec - compute y = A'*x
*
* This routine computes matrix-vector product y = A'*x, where A' is a
* matrix transposed to the constraint matrix A. */
static void AT_by_vec(struct csa *csa, double x[], double y[])
{ /* compute y = A'*x, where A' is transposed to A */
int m = csa->m;
int n = csa->n;
int *A_ptr = csa->A_ptr;
int *A_ind = csa->A_ind;
double *A_val = csa->A_val;
int i, j, t, beg, end;
double temp;
for (j = 1; j <= n; j++) y[j] = 0.0;
for (i = 1; i <= m; i++)
{ temp = x[i];
if (temp == 0.0) continue;
beg = A_ptr[i], end = A_ptr[i+1];
for (t = beg; t < end; t++) y[A_ind[t]] += A_val[t] * temp;
}
return;
}
/***********************************************************************
* decomp_NE - numeric factorization of matrix S = P*A*D*A'*P'
*
* This routine implements numeric phase of Cholesky factorization of
* the matrix S = P*A*D*A'*P', which is a permuted matrix of the normal
* equation system. Matrix D is assumed to be already computed. */
static void decomp_NE(struct csa *csa)
{ adat_numeric(csa->m, csa->n, csa->P, csa->A_ptr, csa->A_ind,
csa->A_val, csa->D, csa->S_ptr, csa->S_ind, csa->S_val,
csa->S_diag);
chol_numeric(csa->m, csa->S_ptr, csa->S_ind, csa->S_val,
csa->S_diag, csa->U_ptr, csa->U_ind, csa->U_val, csa->U_diag);
return;
}
/***********************************************************************
* solve_NE - solve normal equation system
*
* This routine solves the normal equation system:
*
* A*D*A'*y = h.
*
* It is assumed that the matrix A*D*A' has been previously factorized
* by the routine decomp_NE.
*
* On entry the array y contains the vector of right-hand sides h. On
* exit this array contains the computed vector of unknowns y.
*
* Once the vector y has been computed the routine checks for numeric
* stability. If the residual vector:
*
* r = A*D*A'*y - h
*
* is relatively small, the routine returns zero, otherwise non-zero is
* returned. */
static int solve_NE(struct csa *csa, double y[])
{ int m = csa->m;
int n = csa->n;
int *P = csa->P;
int i, j, ret = 0;
double *h, *r, *w;
/* save vector of right-hand sides h */
h = xcalloc(1+m, sizeof(double));
for (i = 1; i <= m; i++) h[i] = y[i];
/* solve normal equation system (A*D*A')*y = h */
/* since S = P*A*D*A'*P' = U'*U, then A*D*A' = P'*U'*U*P, so we
have inv(A*D*A') = P'*inv(U)*inv(U')*P */
/* w := P*h */
w = xcalloc(1+m, sizeof(double));
for (i = 1; i <= m; i++) w[i] = y[P[i]];
/* w := inv(U')*w */
ut_solve(m, csa->U_ptr, csa->U_ind, csa->U_val, csa->U_diag, w);
/* w := inv(U)*w */
u_solve(m, csa->U_ptr, csa->U_ind, csa->U_val, csa->U_diag, w);
/* y := P'*w */
for (i = 1; i <= m; i++) y[i] = w[P[m+i]];
xfree(w);
/* compute residual vector r = A*D*A'*y - h */
r = xcalloc(1+m, sizeof(double));
/* w := A'*y */
w = xcalloc(1+n, sizeof(double));
AT_by_vec(csa, y, w);
/* w := D*w */
for (j = 1; j <= n; j++) w[j] *= csa->D[j];
/* r := A*w */
A_by_vec(csa, w, r);
xfree(w);
/* r := r - h */
for (i = 1; i <= m; i++) r[i] -= h[i];
/* check for numeric stability */
for (i = 1; i <= m; i++)
{ if (fabs(r[i]) / (1.0 + fabs(h[i])) > 1e-4)
{ ret = 1;
break;
}
}
xfree(h);
xfree(r);
return ret;
}
/***********************************************************************
* solve_NS - solve Newtonian system
*
* This routine solves the Newtonian system:
*
* A*dx = p
*
* A'*dy + dz = q
*
* Z*dx + X*dz = r
*
* where X = diag(x[j]), Z = diag(z[j]), by reducing it to the normal
* equation system:
*
* (A*inv(Z)*X*A')*dy = A*inv(Z)*(X*q-r)+p
*
* (it is assumed that the matrix A*inv(Z)*X*A' has been factorized by
* the routine decomp_NE).
*
* Once vector dy has been computed the routine computes vectors dx and
* dz as follows:
*
* dx = inv(Z)*(X*(A'*dy-q)+r)
*
* dz = inv(X)*(r-Z*dx)
*
* The routine solve_NS returns the same code which was reported by the
* routine solve_NE (see above). */
static int solve_NS(struct csa *csa, double p[], double q[], double r[],
double dx[], double dy[], double dz[])
{ int m = csa->m;
int n = csa->n;
double *x = csa->x;
double *z = csa->z;
int i, j, ret;
double *w = dx;
/* compute the vector of right-hand sides A*inv(Z)*(X*q-r)+p for
the normal equation system */
for (j = 1; j <= n; j++)
w[j] = (x[j] * q[j] - r[j]) / z[j];
A_by_vec(csa, w, dy);
for (i = 1; i <= m; i++) dy[i] += p[i];
/* solve the normal equation system to compute vector dy */
ret = solve_NE(csa, dy);
/* compute vectors dx and dz */
AT_by_vec(csa, dy, dx);
for (j = 1; j <= n; j++)
{ dx[j] = (x[j] * (dx[j] - q[j]) + r[j]) / z[j];
dz[j] = (r[j] - z[j] * dx[j]) / x[j];
}
return ret;
}
/***********************************************************************
* initial_point - choose initial point using Mehrotra's heuristic
*
* This routine chooses a starting point using a heuristic proposed in
* the paper:
*
* S. Mehrotra. On the implementation of a primal-dual interior point
* method. SIAM J. on Optim., 2(4), pp. 575-601, 1992.
*
* The starting point x in the primal space is chosen as a solution of
* the following least squares problem:
*
* minimize ||x||
*
* subject to A*x = b
*
* which can be computed explicitly as follows:
*
* x = A'*inv(A*A')*b
*
* Similarly, the starting point (y, z) in the dual space is chosen as
* a solution of the following least squares problem:
*
* minimize ||z||
*
* subject to A'*y + z = c
*
* which can be computed explicitly as follows:
*
* y = inv(A*A')*A*c
*
* z = c - A'*y
*
* However, some components of the vectors x and z may be non-positive
* or close to zero, so the routine uses a Mehrotra's heuristic to find
* a more appropriate starting point. */
static void initial_point(struct csa *csa)
{ int m = csa->m;
int n = csa->n;
double *b = csa->b;
double *c = csa->c;
double *x = csa->x;
double *y = csa->y;
double *z = csa->z;
double *D = csa->D;
int i, j;
double dp, dd, ex, ez, xz;
/* factorize A*A' */
for (j = 1; j <= n; j++) D[j] = 1.0;
decomp_NE(csa);
/* x~ = A'*inv(A*A')*b */
for (i = 1; i <= m; i++) y[i] = b[i];
solve_NE(csa, y);
AT_by_vec(csa, y, x);
/* y~ = inv(A*A')*A*c */
A_by_vec(csa, c, y);
solve_NE(csa, y);
/* z~ = c - A'*y~ */
AT_by_vec(csa, y,z);
for (j = 1; j <= n; j++) z[j] = c[j] - z[j];
/* use Mehrotra's heuristic in order to choose more appropriate
starting point with positive components of vectors x and z */
dp = dd = 0.0;
for (j = 1; j <= n; j++)
{ if (dp < -1.5 * x[j]) dp = -1.5 * x[j];
if (dd < -1.5 * z[j]) dd = -1.5 * z[j];
}
/* note that b = 0 involves x = 0, and c = 0 involves y = 0 and
z = 0, so we need to be careful */
if (dp == 0.0) dp = 1.5;
if (dd == 0.0) dd = 1.5;
ex = ez = xz = 0.0;
for (j = 1; j <= n; j++)
{ ex += (x[j] + dp);
ez += (z[j] + dd);
xz += (x[j] + dp) * (z[j] + dd);
}
dp += 0.5 * (xz / ez);
dd += 0.5 * (xz / ex);
for (j = 1; j <= n; j++)
{ x[j] += dp;
z[j] += dd;
xassert(x[j] > 0.0 && z[j] > 0.0);
}
return;
}
/***********************************************************************
* basic_info - perform basic computations at the current point
*
* This routine computes the following quantities at the current point:
*
* 1) value of the objective function:
*
* F = c'*x + c[0]
*
* 2) relative primal infeasibility:
*
* rpi = ||A*x-b|| / (1+||b||)
*
* 3) relative dual infeasibility:
*
* rdi = ||A'*y+z-c|| / (1+||c||)
*
* 4) primal-dual gap (relative difference between the primal and the
* dual objective function values):
*
* gap = |c'*x-b'*y| / (1+|c'*x|)
*
* 5) merit function:
*
* phi = ||A*x-b|| / max(1,||b||) + ||A'*y+z-c|| / max(1,||c||) +
*
* + |c'*x-b'*y| / max(1,||b||,||c||)
*
* 6) duality measure:
*
* mu = x'*z / n
*
* 7) the ratio of infeasibility to mu:
*
* rmu = max(||A*x-b||,||A'*y+z-c||) / mu
*
* where ||*|| denotes euclidian norm, *' denotes transposition. */
static void basic_info(struct csa *csa)
{ int m = csa->m;
int n = csa->n;
double *b = csa->b;
double *c = csa->c;
double *x = csa->x;
double *y = csa->y;
double *z = csa->z;
int i, j;
double norm1, bnorm, norm2, cnorm, cx, by, *work, temp;
/* compute value of the objective function */
temp = c[0];
for (j = 1; j <= n; j++) temp += c[j] * x[j];
csa->obj = temp;
/* norm1 = ||A*x-b|| */
work = xcalloc(1+m, sizeof(double));
A_by_vec(csa, x, work);
norm1 = 0.0;
for (i = 1; i <= m; i++)
norm1 += (work[i] - b[i]) * (work[i] - b[i]);
norm1 = sqrt(norm1);
xfree(work);
/* bnorm = ||b|| */
bnorm = 0.0;
for (i = 1; i <= m; i++) bnorm += b[i] * b[i];
bnorm = sqrt(bnorm);
/* compute relative primal infeasibility */
csa->rpi = norm1 / (1.0 + bnorm);
/* norm2 = ||A'*y+z-c|| */
work = xcalloc(1+n, sizeof(double));
AT_by_vec(csa, y, work);
norm2 = 0.0;
for (j = 1; j <= n; j++)
norm2 += (work[j] + z[j] - c[j]) * (work[j] + z[j] - c[j]);
norm2 = sqrt(norm2);
xfree(work);
/* cnorm = ||c|| */
cnorm = 0.0;
for (j = 1; j <= n; j++) cnorm += c[j] * c[j];
cnorm = sqrt(cnorm);
/* compute relative dual infeasibility */
csa->rdi = norm2 / (1.0 + cnorm);
/* by = b'*y */
by = 0.0;
for (i = 1; i <= m; i++) by += b[i] * y[i];
/* cx = c'*x */
cx = 0.0;
for (j = 1; j <= n; j++) cx += c[j] * x[j];
/* compute primal-dual gap */
csa->gap = fabs(cx - by) / (1.0 + fabs(cx));
/* compute merit function */
csa->phi = 0.0;
csa->phi += norm1 / (bnorm > 1.0 ? bnorm : 1.0);
csa->phi += norm2 / (cnorm > 1.0 ? cnorm : 1.0);
temp = 1.0;
if (temp < bnorm) temp = bnorm;
if (temp < cnorm) temp = cnorm;
csa->phi += fabs(cx - by) / temp;
/* compute duality measure */
temp = 0.0;
for (j = 1; j <= n; j++) temp += x[j] * z[j];
csa->mu = temp / (double)n;
/* compute the ratio of infeasibility to mu */
csa->rmu = (norm1 > norm2 ? norm1 : norm2) / csa->mu;
return;
}
/***********************************************************************
* make_step - compute next point using Mehrotra's technique
*
* This routine computes the next point using the predictor-corrector
* technique proposed in the paper:
*
* S. Mehrotra. On the implementation of a primal-dual interior point
* method. SIAM J. on Optim., 2(4), pp. 575-601, 1992.
*
* At first, the routine computes so called affine scaling (predictor)
* direction (dx_aff,dy_aff,dz_aff) which is a solution of the system:
*
* A*dx_aff = b - A*x
*
* A'*dy_aff + dz_aff = c - A'*y - z
*
* Z*dx_aff + X*dz_aff = - X*Z*e
*
* where (x,y,z) is the current point, X = diag(x[j]), Z = diag(z[j]),
* e = (1,...,1)'.
*
* Then, the routine computes the centering parameter sigma, using the
* following Mehrotra's heuristic:
*
* alfa_aff_p = inf{0 <= alfa <= 1 | x+alfa*dx_aff >= 0}
*
* alfa_aff_d = inf{0 <= alfa <= 1 | z+alfa*dz_aff >= 0}
*
* mu_aff = (x+alfa_aff_p*dx_aff)'*(z+alfa_aff_d*dz_aff)/n
*
* sigma = (mu_aff/mu)^3
*
* where alfa_aff_p is the maximal stepsize along the affine scaling
* direction in the primal space, alfa_aff_d is the maximal stepsize
* along the same direction in the dual space.
*
* After determining sigma the routine computes so called centering
* (corrector) direction (dx_cc,dy_cc,dz_cc) which is the solution of
* the system:
*
* A*dx_cc = 0
*
* A'*dy_cc + dz_cc = 0
*
* Z*dx_cc + X*dz_cc = sigma*mu*e - X*Z*e
*
* Finally, the routine computes the combined direction
*
* (dx,dy,dz) = (dx_aff,dy_aff,dz_aff) + (dx_cc,dy_cc,dz_cc)
*
* and determines maximal primal and dual stepsizes along the combined
* direction:
*
* alfa_max_p = inf{0 <= alfa <= 1 | x+alfa*dx >= 0}
*
* alfa_max_d = inf{0 <= alfa <= 1 | z+alfa*dz >= 0}
*
* In order to prevent the next point to be too close to the boundary
* of the positive ortant, the routine decreases maximal stepsizes:
*
* alfa_p = gamma_p * alfa_max_p
*
* alfa_d = gamma_d * alfa_max_d
*
* where gamma_p and gamma_d are scaling factors, and computes the next
* point:
*
* x_new = x + alfa_p * dx
*
* y_new = y + alfa_d * dy
*
* z_new = z + alfa_d * dz
*
* which becomes the current point on the next iteration. */
static int make_step(struct csa *csa)
{ int m = csa->m;
int n = csa->n;
double *b = csa->b;
double *c = csa->c;
double *x = csa->x;
double *y = csa->y;
double *z = csa->z;
double *dx_aff = csa->dx_aff;
double *dy_aff = csa->dy_aff;
double *dz_aff = csa->dz_aff;
double *dx_cc = csa->dx_cc;
double *dy_cc = csa->dy_cc;
double *dz_cc = csa->dz_cc;
double *dx = csa->dx;
double *dy = csa->dy;
double *dz = csa->dz;
int i, j, ret = 0;
double temp, gamma_p, gamma_d, *p, *q, *r;
/* allocate working arrays */
p = xcalloc(1+m, sizeof(double));
q = xcalloc(1+n, sizeof(double));
r = xcalloc(1+n, sizeof(double));
/* p = b - A*x */
A_by_vec(csa, x, p);
for (i = 1; i <= m; i++) p[i] = b[i] - p[i];
/* q = c - A'*y - z */
AT_by_vec(csa, y,q);
for (j = 1; j <= n; j++) q[j] = c[j] - q[j] - z[j];
/* r = - X * Z * e */
for (j = 1; j <= n; j++) r[j] = - x[j] * z[j];
/* solve the first Newtonian system */
if (solve_NS(csa, p, q, r, dx_aff, dy_aff, dz_aff))
{ ret = 1;
goto done;
}
/* alfa_aff_p = inf{0 <= alfa <= 1 | x + alfa*dx_aff >= 0} */
/* alfa_aff_d = inf{0 <= alfa <= 1 | z + alfa*dz_aff >= 0} */
csa->alfa_aff_p = csa->alfa_aff_d = 1.0;
for (j = 1; j <= n; j++)
{ if (dx_aff[j] < 0.0)
{ temp = - x[j] / dx_aff[j];
if (csa->alfa_aff_p > temp) csa->alfa_aff_p = temp;
}
if (dz_aff[j] < 0.0)
{ temp = - z[j] / dz_aff[j];
if (csa->alfa_aff_d > temp) csa->alfa_aff_d = temp;
}
}
/* mu_aff = (x+alfa_aff_p*dx_aff)' * (z+alfa_aff_d*dz_aff) / n */
temp = 0.0;
for (j = 1; j <= n; j++)
temp += (x[j] + csa->alfa_aff_p * dx_aff[j]) *
(z[j] + csa->alfa_aff_d * dz_aff[j]);
csa->mu_aff = temp / (double)n;
/* sigma = (mu_aff/mu)^3 */
temp = csa->mu_aff / csa->mu;
csa->sigma = temp * temp * temp;
/* p = 0 */
for (i = 1; i <= m; i++) p[i] = 0.0;
/* q = 0 */
for (j = 1; j <= n; j++) q[j] = 0.0;
/* r = sigma * mu * e - X * Z * e */
for (j = 1; j <= n; j++)
r[j] = csa->sigma * csa->mu - dx_aff[j] * dz_aff[j];
/* solve the second Newtonian system with the same coefficients
but with altered right-hand sides */
if (solve_NS(csa, p, q, r, dx_cc, dy_cc, dz_cc))
{ ret = 1;
goto done;
}
/* (dx,dy,dz) = (dx_aff,dy_aff,dz_aff) + (dx_cc,dy_cc,dz_cc) */
for (j = 1; j <= n; j++) dx[j] = dx_aff[j] + dx_cc[j];
for (i = 1; i <= m; i++) dy[i] = dy_aff[i] + dy_cc[i];
for (j = 1; j <= n; j++) dz[j] = dz_aff[j] + dz_cc[j];
/* alfa_max_p = inf{0 <= alfa <= 1 | x + alfa*dx >= 0} */
/* alfa_max_d = inf{0 <= alfa <= 1 | z + alfa*dz >= 0} */
csa->alfa_max_p = csa->alfa_max_d = 1.0;
for (j = 1; j <= n; j++)
{ if (dx[j] < 0.0)
{ temp = - x[j] / dx[j];
if (csa->alfa_max_p > temp) csa->alfa_max_p = temp;
}
if (dz[j] < 0.0)
{ temp = - z[j] / dz[j];
if (csa->alfa_max_d > temp) csa->alfa_max_d = temp;
}
}
/* determine scale factors (not implemented yet) */
gamma_p = 0.90;
gamma_d = 0.90;
/* compute the next point */
for (j = 1; j <= n; j++)
{ x[j] += gamma_p * csa->alfa_max_p * dx[j];
xassert(x[j] > 0.0);
}
for (i = 1; i <= m; i++)
y[i] += gamma_d * csa->alfa_max_d * dy[i];
for (j = 1; j <= n; j++)
{ z[j] += gamma_d * csa->alfa_max_d * dz[j];
xassert(z[j] > 0.0);
}
done: /* free working arrays */
xfree(p);
xfree(q);
xfree(r);
return ret;
}
/***********************************************************************
* terminate - deallocate common storage area
*
* This routine frees all memory allocated to the common storage area
* used by interior-point method routines. */
static void terminate(struct csa *csa)
{ xfree(csa->D);
xfree(csa->P);
xfree(csa->S_ptr);
xfree(csa->S_ind);
xfree(csa->S_val);
xfree(csa->S_diag);
xfree(csa->U_ptr);
xfree(csa->U_ind);
xfree(csa->U_val);
xfree(csa->U_diag);
xfree(csa->phi_min);
xfree(csa->best_x);
xfree(csa->best_y);
xfree(csa->best_z);
xfree(csa->dx_aff);
xfree(csa->dy_aff);
xfree(csa->dz_aff);
xfree(csa->dx_cc);
xfree(csa->dy_cc);
xfree(csa->dz_cc);
return;
}
/***********************************************************************
* ipm_main - main interior-point method routine
*
* This is a main routine of the primal-dual interior-point method.
*
* The routine ipm_main returns one of the following codes:
*
* 0 - optimal solution found;
* 1 - problem has no feasible (primal or dual) solution;
* 2 - no convergence;
* 3 - iteration limit exceeded;
* 4 - numeric instability on solving Newtonian system.
*
* In case of non-zero return code the routine returns the best point,
* which has been reached during optimization. */
static int ipm_main(struct csa *csa)
{ int m = csa->m;
int n = csa->n;
int i, j, status;
double temp;
/* choose initial point using Mehrotra's heuristic */
if (csa->parm->msg_lev >= GLP_MSG_ALL)
xprintf("Guessing initial point...\n");
initial_point(csa);
/* main loop starts here */
if (csa->parm->msg_lev >= GLP_MSG_ALL)
xprintf("Optimization begins...\n");
for (;;)
{ /* perform basic computations at the current point */
basic_info(csa);
/* save initial value of rmu */
if (csa->iter == 0) csa->rmu0 = csa->rmu;
/* accumulate values of min(phi[k]) and save the best point */
xassert(csa->iter <= ITER_MAX);
if (csa->iter == 0 || csa->phi_min[csa->iter-1] > csa->phi)
{ csa->phi_min[csa->iter] = csa->phi;
csa->best_iter = csa->iter;
for (j = 1; j <= n; j++) csa->best_x[j] = csa->x[j];
for (i = 1; i <= m; i++) csa->best_y[i] = csa->y[i];
for (j = 1; j <= n; j++) csa->best_z[j] = csa->z[j];
csa->best_obj = csa->obj;
}
else
csa->phi_min[csa->iter] = csa->phi_min[csa->iter-1];
/* display information at the current point */
if (csa->parm->msg_lev >= GLP_MSG_ON)
xprintf("%3d: obj = %17.9e; rpi = %8.1e; rdi = %8.1e; gap ="
" %8.1e\n", csa->iter, csa->obj, csa->rpi, csa->rdi,
csa->gap);
/* check if the current point is optimal */
if (csa->rpi < 1e-8 && csa->rdi < 1e-8 && csa->gap < 1e-8)
{ if (csa->parm->msg_lev >= GLP_MSG_ALL)
xprintf("OPTIMAL SOLUTION FOUND\n");
status = 0;
break;
}
/* check if the problem has no feasible solution */
temp = 1e5 * csa->phi_min[csa->iter];
if (temp < 1e-8) temp = 1e-8;
if (csa->phi >= temp)
{ if (csa->parm->msg_lev >= GLP_MSG_ALL)
xprintf("PROBLEM HAS NO FEASIBLE PRIMAL/DUAL SOLUTION\n")
;
status = 1;
break;
}
/* check for very slow convergence or divergence */
if (((csa->rpi >= 1e-8 || csa->rdi >= 1e-8) && csa->rmu /
csa->rmu0 >= 1e6) ||
(csa->iter >= 30 && csa->phi_min[csa->iter] >= 0.5 *
csa->phi_min[csa->iter - 30]))
{ if (csa->parm->msg_lev >= GLP_MSG_ALL)
xprintf("NO CONVERGENCE; SEARCH TERMINATED\n");
status = 2;
break;
}
/* check for maximal number of iterations */
if (csa->iter == ITER_MAX)
{ if (csa->parm->msg_lev >= GLP_MSG_ALL)
xprintf("ITERATION LIMIT EXCEEDED; SEARCH TERMINATED\n");
status = 3;
break;
}
/* start the next iteration */
csa->iter++;
/* factorize normal equation system */
for (j = 1; j <= n; j++) csa->D[j] = csa->x[j] / csa->z[j];
decomp_NE(csa);
/* compute the next point using Mehrotra's predictor-corrector
technique */
if (make_step(csa))
{ if (csa->parm->msg_lev >= GLP_MSG_ALL)
xprintf("NUMERIC INSTABILITY; SEARCH TERMINATED\n");
status = 4;
break;
}
}
/* restore the best point */
if (status != 0)
{ for (j = 1; j <= n; j++) csa->x[j] = csa->best_x[j];
for (i = 1; i <= m; i++) csa->y[i] = csa->best_y[i];
for (j = 1; j <= n; j++) csa->z[j] = csa->best_z[j];
if (csa->parm->msg_lev >= GLP_MSG_ALL)
xprintf("Best point %17.9e was reached on iteration %d\n",
csa->best_obj, csa->best_iter);
}
/* return to the calling program */
return status;
}
/***********************************************************************
* NAME
*
* ipm_solve - core LP solver based on the interior-point method
*
* SYNOPSIS
*
* #include "glpipm.h"
* int ipm_solve(glp_prob *P, const glp_iptcp *parm);
*
* DESCRIPTION
*
* The routine ipm_solve is a core LP solver based on the primal-dual
* interior-point method.
*
* The routine assumes the following standard formulation of LP problem
* to be solved:
*
* minimize
*
* F = c[0] + c[1]*x[1] + c[2]*x[2] + ... + c[n]*x[n]
*
* subject to linear constraints
*
* a[1,1]*x[1] + a[1,2]*x[2] + ... + a[1,n]*x[n] = b[1]
*
* a[2,1]*x[1] + a[2,2]*x[2] + ... + a[2,n]*x[n] = b[2]
*
* . . . . . .
*
* a[m,1]*x[1] + a[m,2]*x[2] + ... + a[m,n]*x[n] = b[m]
*
* and non-negative variables
*
* x[1] >= 0, x[2] >= 0, ..., x[n] >= 0
*
* where:
* F is the objective function;
* x[1], ..., x[n] are (structural) variables;
* c[0] is a constant term of the objective function;
* c[1], ..., c[n] are objective coefficients;
* a[1,1], ..., a[m,n] are constraint coefficients;
* b[1], ..., b[n] are right-hand sides.
*
* The solution is three vectors x, y, and z, which are stored by the
* routine in the arrays x, y, and z, respectively. These vectors
* correspond to the best primal-dual point found during optimization.
* They are approximate solution of the following system (which is the
* Karush-Kuhn-Tucker optimality conditions):
*
* A*x = b (primal feasibility condition)
*
* A'*y + z = c (dual feasibility condition)
*
* x'*z = 0 (primal-dual complementarity condition)
*
* x >= 0, z >= 0 (non-negativity condition)
*
* where:
* x[1], ..., x[n] are primal (structural) variables;
* y[1], ..., y[m] are dual variables (Lagrange multipliers) for
* equality constraints;
* z[1], ..., z[n] are dual variables (Lagrange multipliers) for
* non-negativity constraints.
*
* RETURNS
*
* 0 LP has been successfully solved.
*
* GLP_ENOCVG
* No convergence.
*
* GLP_EITLIM
* Iteration limit exceeded.
*
* GLP_EINSTAB
* Numeric instability on solving Newtonian system.
*
* In case of non-zero return code the routine returns the best point,
* which has been reached during optimization. */
int ipm_solve(glp_prob *P, const glp_iptcp *parm)
{ struct csa _dsa, *csa = &_dsa;
int m = P->m;
int n = P->n;
int nnz = P->nnz;
GLPROW *row;
GLPCOL *col;
GLPAIJ *aij;
int i, j, loc, ret, *A_ind, *A_ptr;
double dir, *A_val, *b, *c, *x, *y, *z;
xassert(m > 0);
xassert(n > 0);
/* allocate working arrays */
A_ptr = xcalloc(1+m+1, sizeof(int));
A_ind = xcalloc(1+nnz, sizeof(int));
A_val = xcalloc(1+nnz, sizeof(double));
b = xcalloc(1+m, sizeof(double));
c = xcalloc(1+n, sizeof(double));
x = xcalloc(1+n, sizeof(double));
y = xcalloc(1+m, sizeof(double));
z = xcalloc(1+n, sizeof(double));
/* prepare rows and constraint coefficients */
loc = 1;
for (i = 1; i <= m; i++)
{ row = P->row[i];
xassert(row->type == GLP_FX);
b[i] = row->lb * row->rii;
A_ptr[i] = loc;
for (aij = row->ptr; aij != NULL; aij = aij->r_next)
{ A_ind[loc] = aij->col->j;
A_val[loc] = row->rii * aij->val * aij->col->sjj;
loc++;
}
}
A_ptr[m+1] = loc;
xassert(loc-1 == nnz);
/* prepare columns and objective coefficients */
if (P->dir == GLP_MIN)
dir = +1.0;
else if (P->dir == GLP_MAX)
dir = -1.0;
else
xassert(P != P);
c[0] = dir * P->c0;
for (j = 1; j <= n; j++)
{ col = P->col[j];
xassert(col->type == GLP_LO && col->lb == 0.0);
c[j] = dir * col->coef * col->sjj;
}
/* allocate and initialize the common storage area */
csa->m = m;
csa->n = n;
csa->A_ptr = A_ptr;
csa->A_ind = A_ind;
csa->A_val = A_val;
csa->b = b;
csa->c = c;
csa->x = x;
csa->y = y;
csa->z = z;
csa->parm = parm;
initialize(csa);
/* solve LP with the interior-point method */
ret = ipm_main(csa);
/* deallocate the common storage area */
terminate(csa);
/* determine solution status */
if (ret == 0)
{ /* optimal solution found */
P->ipt_stat = GLP_OPT;
ret = 0;
}
else if (ret == 1)
{ /* problem has no feasible (primal or dual) solution */
P->ipt_stat = GLP_NOFEAS;
ret = 0;
}
else if (ret == 2)
{ /* no convergence */
P->ipt_stat = GLP_INFEAS;
ret = GLP_ENOCVG;
}
else if (ret == 3)
{ /* iteration limit exceeded */
P->ipt_stat = GLP_INFEAS;
ret = GLP_EITLIM;
}
else if (ret == 4)
{ /* numeric instability on solving Newtonian system */
P->ipt_stat = GLP_INFEAS;
ret = GLP_EINSTAB;
}
else
xassert(ret != ret);
/* store row solution components */
for (i = 1; i <= m; i++)
{ row = P->row[i];
row->pval = row->lb;
row->dval = dir * y[i] * row->rii;
}
/* store column solution components */
P->ipt_obj = P->c0;
for (j = 1; j <= n; j++)
{ col = P->col[j];
col->pval = x[j] * col->sjj;
col->dval = dir * z[j] / col->sjj;
P->ipt_obj += col->coef * col->pval;
}
/* free working arrays */
xfree(A_ptr);
xfree(A_ind);
xfree(A_val);
xfree(b);
xfree(c);
xfree(x);
xfree(y);
xfree(z);
return ret;
}
/* eof */