You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

1427 lines
46 KiB

/* glpmpl04.c */
/***********************************************************************
* This code is part of GLPK (GNU Linear Programming Kit).
*
* Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
* 2009, 2010, 2011, 2013 Andrew Makhorin, Department for Applied
* Informatics, Moscow Aviation Institute, Moscow, Russia. All rights
* reserved. E-mail: <mao@gnu.org>.
*
* GLPK is free software: you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GLPK is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
* License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GLPK. If not, see <http://www.gnu.org/licenses/>.
***********************************************************************/
#include "glpmpl.h"
#define xfault xerror
#define xfprintf glp_format
#define dmp_create_poolx(size) dmp_create_pool()
/**********************************************************************/
/* * * GENERATING AND POSTSOLVING MODEL * * */
/**********************************************************************/
/*----------------------------------------------------------------------
-- alloc_content - allocate content arrays for all model objects.
--
-- This routine allocates content arrays for all existing model objects
-- and thereby finalizes creating model.
--
-- This routine must be called immediately after reading model section,
-- i.e. before reading data section or generating model. */
void alloc_content(MPL *mpl)
{ STATEMENT *stmt;
/* walk through all model statements */
for (stmt = mpl->model; stmt != NULL; stmt = stmt->next)
{ switch (stmt->type)
{ case A_SET:
/* model set */
xassert(stmt->u.set->array == NULL);
stmt->u.set->array = create_array(mpl, A_ELEMSET,
stmt->u.set->dim);
break;
case A_PARAMETER:
/* model parameter */
xassert(stmt->u.par->array == NULL);
switch (stmt->u.par->type)
{ case A_NUMERIC:
case A_INTEGER:
case A_BINARY:
stmt->u.par->array = create_array(mpl, A_NUMERIC,
stmt->u.par->dim);
break;
case A_SYMBOLIC:
stmt->u.par->array = create_array(mpl, A_SYMBOLIC,
stmt->u.par->dim);
break;
default:
xassert(stmt != stmt);
}
break;
case A_VARIABLE:
/* model variable */
xassert(stmt->u.var->array == NULL);
stmt->u.var->array = create_array(mpl, A_ELEMVAR,
stmt->u.var->dim);
break;
case A_CONSTRAINT:
/* model constraint/objective */
xassert(stmt->u.con->array == NULL);
stmt->u.con->array = create_array(mpl, A_ELEMCON,
stmt->u.con->dim);
break;
#if 1 /* 11/II-2008 */
case A_TABLE:
#endif
case A_SOLVE:
case A_CHECK:
case A_DISPLAY:
case A_PRINTF:
case A_FOR:
/* functional statements have no content array */
break;
default:
xassert(stmt != stmt);
}
}
return;
}
/*----------------------------------------------------------------------
-- generate_model - generate model.
--
-- This routine executes the model statements which precede the solve
-- statement. */
void generate_model(MPL *mpl)
{ STATEMENT *stmt;
xassert(!mpl->flag_p);
for (stmt = mpl->model; stmt != NULL; stmt = stmt->next)
{ execute_statement(mpl, stmt);
if (mpl->stmt->type == A_SOLVE) break;
}
mpl->stmt = stmt;
return;
}
/*----------------------------------------------------------------------
-- build_problem - build problem instance.
--
-- This routine builds lists of rows and columns for problem instance,
-- which corresponds to the generated model. */
void build_problem(MPL *mpl)
{ STATEMENT *stmt;
MEMBER *memb;
VARIABLE *v;
CONSTRAINT *c;
FORMULA *t;
int i, j;
xassert(mpl->m == 0);
xassert(mpl->n == 0);
xassert(mpl->row == NULL);
xassert(mpl->col == NULL);
/* check that all elemental variables has zero column numbers */
for (stmt = mpl->model; stmt != NULL; stmt = stmt->next)
{ if (stmt->type == A_VARIABLE)
{ v = stmt->u.var;
for (memb = v->array->head; memb != NULL; memb = memb->next)
xassert(memb->value.var->j == 0);
}
}
/* assign row numbers to elemental constraints and objectives */
for (stmt = mpl->model; stmt != NULL; stmt = stmt->next)
{ if (stmt->type == A_CONSTRAINT)
{ c = stmt->u.con;
for (memb = c->array->head; memb != NULL; memb = memb->next)
{ xassert(memb->value.con->i == 0);
memb->value.con->i = ++mpl->m;
/* walk through linear form and mark elemental variables,
which are referenced at least once */
for (t = memb->value.con->form; t != NULL; t = t->next)
{ xassert(t->var != NULL);
t->var->memb->value.var->j = -1;
}
}
}
}
/* assign column numbers to marked elemental variables */
for (stmt = mpl->model; stmt != NULL; stmt = stmt->next)
{ if (stmt->type == A_VARIABLE)
{ v = stmt->u.var;
for (memb = v->array->head; memb != NULL; memb = memb->next)
if (memb->value.var->j != 0) memb->value.var->j =
++mpl->n;
}
}
/* build list of rows */
mpl->row = xcalloc(1+mpl->m, sizeof(ELEMCON *));
for (i = 1; i <= mpl->m; i++) mpl->row[i] = NULL;
for (stmt = mpl->model; stmt != NULL; stmt = stmt->next)
{ if (stmt->type == A_CONSTRAINT)
{ c = stmt->u.con;
for (memb = c->array->head; memb != NULL; memb = memb->next)
{ i = memb->value.con->i;
xassert(1 <= i && i <= mpl->m);
xassert(mpl->row[i] == NULL);
mpl->row[i] = memb->value.con;
}
}
}
for (i = 1; i <= mpl->m; i++) xassert(mpl->row[i] != NULL);
/* build list of columns */
mpl->col = xcalloc(1+mpl->n, sizeof(ELEMVAR *));
for (j = 1; j <= mpl->n; j++) mpl->col[j] = NULL;
for (stmt = mpl->model; stmt != NULL; stmt = stmt->next)
{ if (stmt->type == A_VARIABLE)
{ v = stmt->u.var;
for (memb = v->array->head; memb != NULL; memb = memb->next)
{ j = memb->value.var->j;
if (j == 0) continue;
xassert(1 <= j && j <= mpl->n);
xassert(mpl->col[j] == NULL);
mpl->col[j] = memb->value.var;
}
}
}
for (j = 1; j <= mpl->n; j++) xassert(mpl->col[j] != NULL);
return;
}
/*----------------------------------------------------------------------
-- postsolve_model - postsolve model.
--
-- This routine executes the model statements which follow the solve
-- statement. */
void postsolve_model(MPL *mpl)
{ STATEMENT *stmt;
xassert(!mpl->flag_p);
mpl->flag_p = 1;
for (stmt = mpl->stmt; stmt != NULL; stmt = stmt->next)
execute_statement(mpl, stmt);
mpl->stmt = NULL;
return;
}
/*----------------------------------------------------------------------
-- clean_model - clean model content.
--
-- This routine cleans the model content that assumes deleting all stuff
-- dynamically allocated on generating/postsolving phase.
--
-- Actually cleaning model content is not needed. This function is used
-- mainly to be sure that there were no logical errors on using dynamic
-- memory pools during the generation phase.
--
-- NOTE: This routine must not be called if any errors were detected on
-- the generation phase. */
void clean_model(MPL *mpl)
{ STATEMENT *stmt;
for (stmt = mpl->model; stmt != NULL; stmt = stmt->next)
clean_statement(mpl, stmt);
/* check that all atoms have been returned to their pools */
if (dmp_in_use(mpl->strings) != 0)
error(mpl, "internal logic error: %d string segment(s) were lo"
"st", dmp_in_use(mpl->strings));
if (dmp_in_use(mpl->symbols) != 0)
error(mpl, "internal logic error: %d symbol(s) were lost",
dmp_in_use(mpl->symbols));
if (dmp_in_use(mpl->tuples) != 0)
error(mpl, "internal logic error: %d n-tuple component(s) were"
" lost", dmp_in_use(mpl->tuples));
if (dmp_in_use(mpl->arrays) != 0)
error(mpl, "internal logic error: %d array(s) were lost",
dmp_in_use(mpl->arrays));
if (dmp_in_use(mpl->members) != 0)
error(mpl, "internal logic error: %d array member(s) were lost"
, dmp_in_use(mpl->members));
if (dmp_in_use(mpl->elemvars) != 0)
error(mpl, "internal logic error: %d elemental variable(s) wer"
"e lost", dmp_in_use(mpl->elemvars));
if (dmp_in_use(mpl->formulae) != 0)
error(mpl, "internal logic error: %d linear term(s) were lost",
dmp_in_use(mpl->formulae));
if (dmp_in_use(mpl->elemcons) != 0)
error(mpl, "internal logic error: %d elemental constraint(s) w"
"ere lost", dmp_in_use(mpl->elemcons));
return;
}
/**********************************************************************/
/* * * INPUT/OUTPUT * * */
/**********************************************************************/
/*----------------------------------------------------------------------
-- open_input - open input text file.
--
-- This routine opens the input text file for scanning. */
void open_input(MPL *mpl, char *file)
{ mpl->line = 0;
mpl->c = '\n';
mpl->token = 0;
mpl->imlen = 0;
mpl->image[0] = '\0';
mpl->value = 0.0;
mpl->b_token = T_EOF;
mpl->b_imlen = 0;
mpl->b_image[0] = '\0';
mpl->b_value = 0.0;
mpl->f_dots = 0;
mpl->f_scan = 0;
mpl->f_token = 0;
mpl->f_imlen = 0;
mpl->f_image[0] = '\0';
mpl->f_value = 0.0;
memset(mpl->context, ' ', CONTEXT_SIZE);
mpl->c_ptr = 0;
xassert(mpl->in_fp == NULL);
mpl->in_fp = glp_open(file, "r");
if (mpl->in_fp == NULL)
error(mpl, "unable to open %s - %s", file, get_err_msg());
mpl->in_file = file;
/* scan the very first character */
get_char(mpl);
/* scan the very first token */
get_token(mpl);
return;
}
/*----------------------------------------------------------------------
-- read_char - read next character from input text file.
--
-- This routine returns a next ASCII character read from the input text
-- file. If the end of file has been reached, EOF is returned. */
int read_char(MPL *mpl)
{ int c;
xassert(mpl->in_fp != NULL);
c = glp_getc(mpl->in_fp);
if (c < 0)
{ if (glp_ioerr(mpl->in_fp))
error(mpl, "read error on %s - %s", mpl->in_file,
get_err_msg());
c = EOF;
}
return c;
}
/*----------------------------------------------------------------------
-- close_input - close input text file.
--
-- This routine closes the input text file. */
void close_input(MPL *mpl)
{ xassert(mpl->in_fp != NULL);
glp_close(mpl->in_fp);
mpl->in_fp = NULL;
mpl->in_file = NULL;
return;
}
/*----------------------------------------------------------------------
-- open_output - open output text file.
--
-- This routine opens the output text file for writing data produced by
-- display and printf statements. */
void open_output(MPL *mpl, char *file)
{ xassert(mpl->out_fp == NULL);
if (file == NULL)
{ file = "<stdout>";
mpl->out_fp = (void *)stdout;
}
else
{ mpl->out_fp = glp_open(file, "w");
if (mpl->out_fp == NULL)
error(mpl, "unable to create %s - %s", file, get_err_msg());
}
mpl->out_file = xmalloc(strlen(file)+1);
strcpy(mpl->out_file, file);
return;
}
/*----------------------------------------------------------------------
-- write_char - write next character to output text file.
--
-- This routine writes an ASCII character to the output text file. */
void write_char(MPL *mpl, int c)
{ xassert(mpl->out_fp != NULL);
if (mpl->out_fp == (void *)stdout)
xprintf("%c", c);
else
xfprintf(mpl->out_fp, "%c", c);
return;
}
/*----------------------------------------------------------------------
-- write_text - format and write text to output text file.
--
-- This routine formats a text using the format control string and then
-- writes this text to the output text file. */
void write_text(MPL *mpl, char *fmt, ...)
{ va_list arg;
char buf[OUTBUF_SIZE], *c;
va_start(arg, fmt);
vsprintf(buf, fmt, arg);
xassert(strlen(buf) < sizeof(buf));
va_end(arg);
for (c = buf; *c != '\0'; c++) write_char(mpl, *c);
return;
}
/*----------------------------------------------------------------------
-- flush_output - finalize writing data to output text file.
--
-- This routine finalizes writing data to the output text file. */
void flush_output(MPL *mpl)
{ xassert(mpl->out_fp != NULL);
if (mpl->out_fp != (void *)stdout)
{
#if 0 /* FIXME */
xfflush(mpl->out_fp);
#endif
if (glp_ioerr(mpl->out_fp))
error(mpl, "write error on %s - %s", mpl->out_file,
get_err_msg());
}
return;
}
/**********************************************************************/
/* * * SOLVER INTERFACE * * */
/**********************************************************************/
/*----------------------------------------------------------------------
-- error - print error message and terminate model processing.
--
-- This routine formats and prints an error message and then terminates
-- model processing. */
void error(MPL *mpl, char *fmt, ...)
{ va_list arg;
char msg[4095+1];
va_start(arg, fmt);
vsprintf(msg, fmt, arg);
xassert(strlen(msg) < sizeof(msg));
va_end(arg);
switch (mpl->phase)
{ case 1:
case 2:
/* translation phase */
xprintf("%s:%d: %s\n",
mpl->in_file == NULL ? "(unknown)" : mpl->in_file,
mpl->line, msg);
print_context(mpl);
break;
case 3:
/* generation/postsolve phase */
xprintf("%s:%d: %s\n",
mpl->mod_file == NULL ? "(unknown)" : mpl->mod_file,
mpl->stmt == NULL ? 0 : mpl->stmt->line, msg);
break;
default:
xassert(mpl != mpl);
}
mpl->phase = 4;
longjmp(mpl->jump, 1);
/* no return */
}
/*----------------------------------------------------------------------
-- warning - print warning message and continue model processing.
--
-- This routine formats and prints a warning message and returns to the
-- calling program. */
void warning(MPL *mpl, char *fmt, ...)
{ va_list arg;
char msg[4095+1];
va_start(arg, fmt);
vsprintf(msg, fmt, arg);
xassert(strlen(msg) < sizeof(msg));
va_end(arg);
switch (mpl->phase)
{ case 1:
case 2:
/* translation phase */
xprintf("%s:%d: warning: %s\n",
mpl->in_file == NULL ? "(unknown)" : mpl->in_file,
mpl->line, msg);
break;
case 3:
/* generation/postsolve phase */
xprintf("%s:%d: warning: %s\n",
mpl->mod_file == NULL ? "(unknown)" : mpl->mod_file,
mpl->stmt == NULL ? 0 : mpl->stmt->line, msg);
break;
default:
xassert(mpl != mpl);
}
return;
}
/*----------------------------------------------------------------------
-- mpl_initialize - create and initialize translator database.
--
-- *Synopsis*
--
-- #include "glpmpl.h"
-- MPL *mpl_initialize(void);
--
-- *Description*
--
-- The routine mpl_initialize creates and initializes the database used
-- by the GNU MathProg translator.
--
-- *Returns*
--
-- The routine returns a pointer to the database created. */
MPL *mpl_initialize(void)
{ MPL *mpl;
mpl = xmalloc(sizeof(MPL));
/* scanning segment */
mpl->line = 0;
mpl->c = 0;
mpl->token = 0;
mpl->imlen = 0;
mpl->image = xcalloc(MAX_LENGTH+1, sizeof(char));
mpl->image[0] = '\0';
mpl->value = 0.0;
mpl->b_token = 0;
mpl->b_imlen = 0;
mpl->b_image = xcalloc(MAX_LENGTH+1, sizeof(char));
mpl->b_image[0] = '\0';
mpl->b_value = 0.0;
mpl->f_dots = 0;
mpl->f_scan = 0;
mpl->f_token = 0;
mpl->f_imlen = 0;
mpl->f_image = xcalloc(MAX_LENGTH+1, sizeof(char));
mpl->f_image[0] = '\0';
mpl->f_value = 0.0;
mpl->context = xcalloc(CONTEXT_SIZE, sizeof(char));
memset(mpl->context, ' ', CONTEXT_SIZE);
mpl->c_ptr = 0;
mpl->flag_d = 0;
/* translating segment */
mpl->pool = dmp_create_poolx(0);
mpl->tree = avl_create_tree(avl_strcmp, NULL);
mpl->model = NULL;
mpl->flag_x = 0;
mpl->as_within = 0;
mpl->as_in = 0;
mpl->as_binary = 0;
mpl->flag_s = 0;
/* common segment */
mpl->strings = dmp_create_poolx(sizeof(STRING));
mpl->symbols = dmp_create_poolx(sizeof(SYMBOL));
mpl->tuples = dmp_create_poolx(sizeof(TUPLE));
mpl->arrays = dmp_create_poolx(sizeof(ARRAY));
mpl->members = dmp_create_poolx(sizeof(MEMBER));
mpl->elemvars = dmp_create_poolx(sizeof(ELEMVAR));
mpl->formulae = dmp_create_poolx(sizeof(FORMULA));
mpl->elemcons = dmp_create_poolx(sizeof(ELEMCON));
mpl->a_list = NULL;
mpl->sym_buf = xcalloc(255+1, sizeof(char));
mpl->sym_buf[0] = '\0';
mpl->tup_buf = xcalloc(255+1, sizeof(char));
mpl->tup_buf[0] = '\0';
/* generating/postsolving segment */
mpl->rand = rng_create_rand();
mpl->flag_p = 0;
mpl->stmt = NULL;
#if 1 /* 11/II-2008 */
mpl->dca = NULL;
#endif
mpl->m = 0;
mpl->n = 0;
mpl->row = NULL;
mpl->col = NULL;
/* input/output segment */
mpl->in_fp = NULL;
mpl->in_file = NULL;
mpl->out_fp = NULL;
mpl->out_file = NULL;
mpl->prt_fp = NULL;
mpl->prt_file = NULL;
/* solver interface segment */
if (setjmp(mpl->jump)) xassert(mpl != mpl);
mpl->phase = 0;
mpl->mod_file = NULL;
mpl->mpl_buf = xcalloc(255+1, sizeof(char));
mpl->mpl_buf[0] = '\0';
return mpl;
}
/*----------------------------------------------------------------------
-- mpl_read_model - read model section and optional data section.
--
-- *Synopsis*
--
-- #include "glpmpl.h"
-- int mpl_read_model(MPL *mpl, char *file, int skip_data);
--
-- *Description*
--
-- The routine mpl_read_model reads model section and optionally data
-- section, which may follow the model section, from the text file,
-- whose name is the character string file, performs translating model
-- statements and data blocks, and stores all the information in the
-- translator database.
--
-- The parameter skip_data is a flag. If the input file contains the
-- data section and this flag is set, the data section is not read as
-- if there were no data section and a warning message is issued. This
-- allows reading the data section from another input file.
--
-- This routine should be called once after the routine mpl_initialize
-- and before other API routines.
--
-- *Returns*
--
-- The routine mpl_read_model returns one the following codes:
--
-- 1 - translation successful. The input text file contains only model
-- section. In this case the calling program may call the routine
-- mpl_read_data to read data section from another file.
-- 2 - translation successful. The input text file contains both model
-- and data section.
-- 4 - processing failed due to some errors. In this case the calling
-- program should call the routine mpl_terminate to terminate model
-- processing. */
int mpl_read_model(MPL *mpl, char *file, int skip_data)
{ if (mpl->phase != 0)
xfault("mpl_read_model: invalid call sequence\n");
if (file == NULL)
xfault("mpl_read_model: no input filename specified\n");
/* set up error handler */
if (setjmp(mpl->jump)) goto done;
/* translate model section */
mpl->phase = 1;
xprintf("Reading model section from %s...\n", file);
open_input(mpl, file);
model_section(mpl);
if (mpl->model == NULL)
error(mpl, "empty model section not allowed");
/* save name of the input text file containing model section for
error diagnostics during the generation phase */
mpl->mod_file = xcalloc(strlen(file)+1, sizeof(char));
strcpy(mpl->mod_file, mpl->in_file);
/* allocate content arrays for all model objects */
alloc_content(mpl);
/* optional data section may begin with the keyword 'data' */
if (is_keyword(mpl, "data"))
{ if (skip_data)
{ warning(mpl, "data section ignored");
goto skip;
}
mpl->flag_d = 1;
get_token(mpl /* data */);
if (mpl->token != T_SEMICOLON)
error(mpl, "semicolon missing where expected");
get_token(mpl /* ; */);
/* translate data section */
mpl->phase = 2;
xprintf("Reading data section from %s...\n", file);
data_section(mpl);
}
/* process end statement */
end_statement(mpl);
skip: xprintf("%d line%s were read\n",
mpl->line, mpl->line == 1 ? "" : "s");
close_input(mpl);
done: /* return to the calling program */
return mpl->phase;
}
/*----------------------------------------------------------------------
-- mpl_read_data - read data section.
--
-- *Synopsis*
--
-- #include "glpmpl.h"
-- int mpl_read_data(MPL *mpl, char *file);
--
-- *Description*
--
-- The routine mpl_read_data reads data section from the text file,
-- whose name is the character string file, performs translating data
-- blocks, and stores the data read in the translator database.
--
-- If this routine is used, it should be called once after the routine
-- mpl_read_model and if the latter returned the code 1.
--
-- *Returns*
--
-- The routine mpl_read_data returns one of the following codes:
--
-- 2 - data section has been successfully processed.
-- 4 - processing failed due to some errors. In this case the calling
-- program should call the routine mpl_terminate to terminate model
-- processing. */
int mpl_read_data(MPL *mpl, char *file)
#if 0 /* 02/X-2008 */
{ if (mpl->phase != 1)
#else
{ if (!(mpl->phase == 1 || mpl->phase == 2))
#endif
xfault("mpl_read_data: invalid call sequence\n");
if (file == NULL)
xfault("mpl_read_data: no input filename specified\n");
/* set up error handler */
if (setjmp(mpl->jump)) goto done;
/* process data section */
mpl->phase = 2;
xprintf("Reading data section from %s...\n", file);
mpl->flag_d = 1;
open_input(mpl, file);
/* in this case the keyword 'data' is optional */
if (is_literal(mpl, "data"))
{ get_token(mpl /* data */);
if (mpl->token != T_SEMICOLON)
error(mpl, "semicolon missing where expected");
get_token(mpl /* ; */);
}
data_section(mpl);
/* process end statement */
end_statement(mpl);
xprintf("%d line%s were read\n",
mpl->line, mpl->line == 1 ? "" : "s");
close_input(mpl);
done: /* return to the calling program */
return mpl->phase;
}
/*----------------------------------------------------------------------
-- mpl_generate - generate model.
--
-- *Synopsis*
--
-- #include "glpmpl.h"
-- int mpl_generate(MPL *mpl, char *file);
--
-- *Description*
--
-- The routine mpl_generate generates the model using its description
-- stored in the translator database. This phase means generating all
-- variables, constraints, and objectives, executing check and display
-- statements, which precede the solve statement (if it is presented),
-- and building the problem instance.
--
-- The character string file specifies the name of output text file, to
-- which output produced by display statements should be written. It is
-- allowed to specify NULL, in which case the output goes to stdout via
-- the routine print.
--
-- This routine should be called once after the routine mpl_read_model
-- or mpl_read_data and if one of the latters returned the code 2.
--
-- *Returns*
--
-- The routine mpl_generate returns one of the following codes:
--
-- 3 - model has been successfully generated. In this case the calling
-- program may call other api routines to obtain components of the
-- problem instance from the translator database.
-- 4 - processing failed due to some errors. In this case the calling
-- program should call the routine mpl_terminate to terminate model
-- processing. */
int mpl_generate(MPL *mpl, char *file)
{ if (!(mpl->phase == 1 || mpl->phase == 2))
xfault("mpl_generate: invalid call sequence\n");
/* set up error handler */
if (setjmp(mpl->jump)) goto done;
/* generate model */
mpl->phase = 3;
open_output(mpl, file);
generate_model(mpl);
flush_output(mpl);
/* build problem instance */
build_problem(mpl);
/* generation phase has been finished */
xprintf("Model has been successfully generated\n");
done: /* return to the calling program */
return mpl->phase;
}
/*----------------------------------------------------------------------
-- mpl_get_prob_name - obtain problem (model) name.
--
-- *Synopsis*
--
-- #include "glpmpl.h"
-- char *mpl_get_prob_name(MPL *mpl);
--
-- *Returns*
--
-- The routine mpl_get_prob_name returns a pointer to internal buffer,
-- which contains symbolic name of the problem (model).
--
-- *Note*
--
-- Currently MathProg has no feature to assign a symbolic name to the
-- model. Therefore the routine mpl_get_prob_name tries to construct
-- such name using the name of input text file containing model section,
-- although this is not a good idea (due to portability problems). */
char *mpl_get_prob_name(MPL *mpl)
{ char *name = mpl->mpl_buf;
char *file = mpl->mod_file;
int k;
if (mpl->phase != 3)
xfault("mpl_get_prob_name: invalid call sequence\n");
for (;;)
{ if (strchr(file, '/') != NULL)
file = strchr(file, '/') + 1;
else if (strchr(file, '\\') != NULL)
file = strchr(file, '\\') + 1;
else if (strchr(file, ':') != NULL)
file = strchr(file, ':') + 1;
else
break;
}
for (k = 0; ; k++)
{ if (k == 255) break;
if (!(isalnum((unsigned char)*file) || *file == '_')) break;
name[k] = *file++;
}
if (k == 0)
strcpy(name, "Unknown");
else
name[k] = '\0';
xassert(strlen(name) <= 255);
return name;
}
/*----------------------------------------------------------------------
-- mpl_get_num_rows - determine number of rows.
--
-- *Synopsis*
--
-- #include "glpmpl.h"
-- int mpl_get_num_rows(MPL *mpl);
--
-- *Returns*
--
-- The routine mpl_get_num_rows returns total number of rows in the
-- problem, where each row is an individual constraint or objective. */
int mpl_get_num_rows(MPL *mpl)
{ if (mpl->phase != 3)
xfault("mpl_get_num_rows: invalid call sequence\n");
return mpl->m;
}
/*----------------------------------------------------------------------
-- mpl_get_num_cols - determine number of columns.
--
-- *Synopsis*
--
-- #include "glpmpl.h"
-- int mpl_get_num_cols(MPL *mpl);
--
-- *Returns*
--
-- The routine mpl_get_num_cols returns total number of columns in the
-- problem, where each column is an individual variable. */
int mpl_get_num_cols(MPL *mpl)
{ if (mpl->phase != 3)
xfault("mpl_get_num_cols: invalid call sequence\n");
return mpl->n;
}
/*----------------------------------------------------------------------
-- mpl_get_row_name - obtain row name.
--
-- *Synopsis*
--
-- #include "glpmpl.h"
-- char *mpl_get_row_name(MPL *mpl, int i);
--
-- *Returns*
--
-- The routine mpl_get_row_name returns a pointer to internal buffer,
-- which contains symbolic name of i-th row of the problem. */
char *mpl_get_row_name(MPL *mpl, int i)
{ char *name = mpl->mpl_buf, *t;
int len;
if (mpl->phase != 3)
xfault("mpl_get_row_name: invalid call sequence\n");
if (!(1 <= i && i <= mpl->m))
xfault("mpl_get_row_name: i = %d; row number out of range\n",
i);
strcpy(name, mpl->row[i]->con->name);
len = strlen(name);
xassert(len <= 255);
t = format_tuple(mpl, '[', mpl->row[i]->memb->tuple);
while (*t)
{ if (len == 255) break;
name[len++] = *t++;
}
name[len] = '\0';
if (len == 255) strcpy(name+252, "...");
xassert(strlen(name) <= 255);
return name;
}
/*----------------------------------------------------------------------
-- mpl_get_row_kind - determine row kind.
--
-- *Synopsis*
--
-- #include "glpmpl.h"
-- int mpl_get_row_kind(MPL *mpl, int i);
--
-- *Returns*
--
-- The routine mpl_get_row_kind returns the kind of i-th row, which can
-- be one of the following:
--
-- MPL_ST - non-free (constraint) row;
-- MPL_MIN - free (objective) row to be minimized;
-- MPL_MAX - free (objective) row to be maximized. */
int mpl_get_row_kind(MPL *mpl, int i)
{ int kind;
if (mpl->phase != 3)
xfault("mpl_get_row_kind: invalid call sequence\n");
if (!(1 <= i && i <= mpl->m))
xfault("mpl_get_row_kind: i = %d; row number out of range\n",
i);
switch (mpl->row[i]->con->type)
{ case A_CONSTRAINT:
kind = MPL_ST; break;
case A_MINIMIZE:
kind = MPL_MIN; break;
case A_MAXIMIZE:
kind = MPL_MAX; break;
default:
xassert(mpl != mpl);
}
return kind;
}
/*----------------------------------------------------------------------
-- mpl_get_row_bnds - obtain row bounds.
--
-- *Synopsis*
--
-- #include "glpmpl.h"
-- int mpl_get_row_bnds(MPL *mpl, int i, double *lb, double *ub);
--
-- *Description*
--
-- The routine mpl_get_row_bnds stores lower and upper bounds of i-th
-- row of the problem to the locations, which the parameters lb and ub
-- point to, respectively. Besides the routine returns the type of the
-- i-th row.
--
-- If some of the parameters lb and ub is NULL, the corresponding bound
-- value is not stored.
--
-- Types and bounds have the following meaning:
--
-- Type Bounds Note
-- -----------------------------------------------------------
-- MPL_FR -inf < f(x) < +inf Free linear form
-- MPL_LO lb <= f(x) < +inf Inequality f(x) >= lb
-- MPL_UP -inf < f(x) <= ub Inequality f(x) <= ub
-- MPL_DB lb <= f(x) <= ub Inequality lb <= f(x) <= ub
-- MPL_FX f(x) = lb Equality f(x) = lb
--
-- where f(x) is the corresponding linear form of the i-th row.
--
-- If the row has no lower bound, *lb is set to zero; if the row has
-- no upper bound, *ub is set to zero; and if the row is of fixed type,
-- both *lb and *ub are set to the same value.
--
-- *Returns*
--
-- The routine returns the type of the i-th row as it is stated in the
-- table above. */
int mpl_get_row_bnds(MPL *mpl, int i, double *_lb, double *_ub)
{ ELEMCON *con;
int type;
double lb, ub;
if (mpl->phase != 3)
xfault("mpl_get_row_bnds: invalid call sequence\n");
if (!(1 <= i && i <= mpl->m))
xfault("mpl_get_row_bnds: i = %d; row number out of range\n",
i);
con = mpl->row[i];
#if 0 /* 21/VII-2006 */
if (con->con->lbnd == NULL && con->con->ubnd == NULL)
type = MPL_FR, lb = ub = 0.0;
else if (con->con->ubnd == NULL)
type = MPL_LO, lb = con->lbnd, ub = 0.0;
else if (con->con->lbnd == NULL)
type = MPL_UP, lb = 0.0, ub = con->ubnd;
else if (con->con->lbnd != con->con->ubnd)
type = MPL_DB, lb = con->lbnd, ub = con->ubnd;
else
type = MPL_FX, lb = ub = con->lbnd;
#else
lb = (con->con->lbnd == NULL ? -DBL_MAX : con->lbnd);
ub = (con->con->ubnd == NULL ? +DBL_MAX : con->ubnd);
if (lb == -DBL_MAX && ub == +DBL_MAX)
type = MPL_FR, lb = ub = 0.0;
else if (ub == +DBL_MAX)
type = MPL_LO, ub = 0.0;
else if (lb == -DBL_MAX)
type = MPL_UP, lb = 0.0;
else if (con->con->lbnd != con->con->ubnd)
type = MPL_DB;
else
type = MPL_FX;
#endif
if (_lb != NULL) *_lb = lb;
if (_ub != NULL) *_ub = ub;
return type;
}
/*----------------------------------------------------------------------
-- mpl_get_mat_row - obtain row of the constraint matrix.
--
-- *Synopsis*
--
-- #include "glpmpl.h"
-- int mpl_get_mat_row(MPL *mpl, int i, int ndx[], double val[]);
--
-- *Description*
--
-- The routine mpl_get_mat_row stores column indices and numeric values
-- of constraint coefficients for the i-th row to locations ndx[1], ...,
-- ndx[len] and val[1], ..., val[len], respectively, where 0 <= len <= n
-- is number of (structural) non-zero constraint coefficients, and n is
-- number of columns in the problem.
--
-- If the parameter ndx is NULL, column indices are not stored. If the
-- parameter val is NULL, numeric values are not stored.
--
-- Note that free rows may have constant terms, which are not part of
-- the constraint matrix and therefore not reported by this routine. The
-- constant term of a particular row can be obtained, if necessary, via
-- the routine mpl_get_row_c0.
--
-- *Returns*
--
-- The routine mpl_get_mat_row returns len, which is length of i-th row
-- of the constraint matrix (i.e. number of non-zero coefficients). */
int mpl_get_mat_row(MPL *mpl, int i, int ndx[], double val[])
{ FORMULA *term;
int len = 0;
if (mpl->phase != 3)
xfault("mpl_get_mat_row: invalid call sequence\n");
if (!(1 <= i && i <= mpl->m))
xfault("mpl_get_mat_row: i = %d; row number out of range\n",
i);
for (term = mpl->row[i]->form; term != NULL; term = term->next)
{ xassert(term->var != NULL);
len++;
xassert(len <= mpl->n);
if (ndx != NULL) ndx[len] = term->var->j;
if (val != NULL) val[len] = term->coef;
}
return len;
}
/*----------------------------------------------------------------------
-- mpl_get_row_c0 - obtain constant term of free row.
--
-- *Synopsis*
--
-- #include "glpmpl.h"
-- double mpl_get_row_c0(MPL *mpl, int i);
--
-- *Returns*
--
-- The routine mpl_get_row_c0 returns numeric value of constant term of
-- i-th row.
--
-- Note that only free rows may have non-zero constant terms. Therefore
-- if i-th row is not free, the routine returns zero. */
double mpl_get_row_c0(MPL *mpl, int i)
{ ELEMCON *con;
double c0;
if (mpl->phase != 3)
xfault("mpl_get_row_c0: invalid call sequence\n");
if (!(1 <= i && i <= mpl->m))
xfault("mpl_get_row_c0: i = %d; row number out of range\n",
i);
con = mpl->row[i];
if (con->con->lbnd == NULL && con->con->ubnd == NULL)
c0 = - con->lbnd;
else
c0 = 0.0;
return c0;
}
/*----------------------------------------------------------------------
-- mpl_get_col_name - obtain column name.
--
-- *Synopsis*
--
-- #include "glpmpl.h"
-- char *mpl_get_col_name(MPL *mpl, int j);
--
-- *Returns*
--
-- The routine mpl_get_col_name returns a pointer to internal buffer,
-- which contains symbolic name of j-th column of the problem. */
char *mpl_get_col_name(MPL *mpl, int j)
{ char *name = mpl->mpl_buf, *t;
int len;
if (mpl->phase != 3)
xfault("mpl_get_col_name: invalid call sequence\n");
if (!(1 <= j && j <= mpl->n))
xfault("mpl_get_col_name: j = %d; column number out of range\n"
, j);
strcpy(name, mpl->col[j]->var->name);
len = strlen(name);
xassert(len <= 255);
t = format_tuple(mpl, '[', mpl->col[j]->memb->tuple);
while (*t)
{ if (len == 255) break;
name[len++] = *t++;
}
name[len] = '\0';
if (len == 255) strcpy(name+252, "...");
xassert(strlen(name) <= 255);
return name;
}
/*----------------------------------------------------------------------
-- mpl_get_col_kind - determine column kind.
--
-- *Synopsis*
--
-- #include "glpmpl.h"
-- int mpl_get_col_kind(MPL *mpl, int j);
--
-- *Returns*
--
-- The routine mpl_get_col_kind returns the kind of j-th column, which
-- can be one of the following:
--
-- MPL_NUM - continuous variable;
-- MPL_INT - integer variable;
-- MPL_BIN - binary variable.
--
-- Note that column kinds are defined independently on type and bounds
-- (reported by the routine mpl_get_col_bnds) of corresponding columns.
-- This means, in particular, that bounds of an integer column may be
-- fractional, or a binary column may have lower and upper bounds that
-- are not 0 and 1 (or it may have no lower/upper bound at all). */
int mpl_get_col_kind(MPL *mpl, int j)
{ int kind;
if (mpl->phase != 3)
xfault("mpl_get_col_kind: invalid call sequence\n");
if (!(1 <= j && j <= mpl->n))
xfault("mpl_get_col_kind: j = %d; column number out of range\n"
, j);
switch (mpl->col[j]->var->type)
{ case A_NUMERIC:
kind = MPL_NUM; break;
case A_INTEGER:
kind = MPL_INT; break;
case A_BINARY:
kind = MPL_BIN; break;
default:
xassert(mpl != mpl);
}
return kind;
}
/*----------------------------------------------------------------------
-- mpl_get_col_bnds - obtain column bounds.
--
-- *Synopsis*
--
-- #include "glpmpl.h"
-- int mpl_get_col_bnds(MPL *mpl, int j, double *lb, double *ub);
--
-- *Description*
--
-- The routine mpl_get_col_bnds stores lower and upper bound of j-th
-- column of the problem to the locations, which the parameters lb and
-- ub point to, respectively. Besides the routine returns the type of
-- the j-th column.
--
-- If some of the parameters lb and ub is NULL, the corresponding bound
-- value is not stored.
--
-- Types and bounds have the following meaning:
--
-- Type Bounds Note
-- ------------------------------------------------------
-- MPL_FR -inf < x < +inf Free (unbounded) variable
-- MPL_LO lb <= x < +inf Variable with lower bound
-- MPL_UP -inf < x <= ub Variable with upper bound
-- MPL_DB lb <= x <= ub Double-bounded variable
-- MPL_FX x = lb Fixed variable
--
-- where x is individual variable corresponding to the j-th column.
--
-- If the column has no lower bound, *lb is set to zero; if the column
-- has no upper bound, *ub is set to zero; and if the column is of fixed
-- type, both *lb and *ub are set to the same value.
--
-- *Returns*
--
-- The routine returns the type of the j-th column as it is stated in
-- the table above. */
int mpl_get_col_bnds(MPL *mpl, int j, double *_lb, double *_ub)
{ ELEMVAR *var;
int type;
double lb, ub;
if (mpl->phase != 3)
xfault("mpl_get_col_bnds: invalid call sequence\n");
if (!(1 <= j && j <= mpl->n))
xfault("mpl_get_col_bnds: j = %d; column number out of range\n"
, j);
var = mpl->col[j];
#if 0 /* 21/VII-2006 */
if (var->var->lbnd == NULL && var->var->ubnd == NULL)
type = MPL_FR, lb = ub = 0.0;
else if (var->var->ubnd == NULL)
type = MPL_LO, lb = var->lbnd, ub = 0.0;
else if (var->var->lbnd == NULL)
type = MPL_UP, lb = 0.0, ub = var->ubnd;
else if (var->var->lbnd != var->var->ubnd)
type = MPL_DB, lb = var->lbnd, ub = var->ubnd;
else
type = MPL_FX, lb = ub = var->lbnd;
#else
lb = (var->var->lbnd == NULL ? -DBL_MAX : var->lbnd);
ub = (var->var->ubnd == NULL ? +DBL_MAX : var->ubnd);
if (lb == -DBL_MAX && ub == +DBL_MAX)
type = MPL_FR, lb = ub = 0.0;
else if (ub == +DBL_MAX)
type = MPL_LO, ub = 0.0;
else if (lb == -DBL_MAX)
type = MPL_UP, lb = 0.0;
else if (var->var->lbnd != var->var->ubnd)
type = MPL_DB;
else
type = MPL_FX;
#endif
if (_lb != NULL) *_lb = lb;
if (_ub != NULL) *_ub = ub;
return type;
}
/*----------------------------------------------------------------------
-- mpl_has_solve_stmt - check if model has solve statement.
--
-- *Synopsis*
--
-- #include "glpmpl.h"
-- int mpl_has_solve_stmt(MPL *mpl);
--
-- *Returns*
--
-- If the model has the solve statement, the routine returns non-zero,
-- otherwise zero is returned. */
int mpl_has_solve_stmt(MPL *mpl)
{ if (mpl->phase != 3)
xfault("mpl_has_solve_stmt: invalid call sequence\n");
return mpl->flag_s;
}
#if 1 /* 15/V-2010 */
void mpl_put_row_soln(MPL *mpl, int i, int stat, double prim,
double dual)
{ /* store row (constraint/objective) solution components */
xassert(mpl->phase == 3);
xassert(1 <= i && i <= mpl->m);
mpl->row[i]->stat = stat;
mpl->row[i]->prim = prim;
mpl->row[i]->dual = dual;
return;
}
#endif
#if 1 /* 15/V-2010 */
void mpl_put_col_soln(MPL *mpl, int j, int stat, double prim,
double dual)
{ /* store column (variable) solution components */
xassert(mpl->phase == 3);
xassert(1 <= j && j <= mpl->n);
mpl->col[j]->stat = stat;
mpl->col[j]->prim = prim;
mpl->col[j]->dual = dual;
return;
}
#endif
#if 0 /* 15/V-2010 */
/*----------------------------------------------------------------------
-- mpl_put_col_value - store column value.
--
-- *Synopsis*
--
-- #include "glpmpl.h"
-- void mpl_put_col_value(MPL *mpl, int j, double val);
--
-- *Description*
--
-- The routine mpl_put_col_value stores numeric value of j-th column
-- into the translator database. It is assumed that the column value is
-- provided by the solver. */
void mpl_put_col_value(MPL *mpl, int j, double val)
{ if (mpl->phase != 3)
xfault("mpl_put_col_value: invalid call sequence\n");
if (!(1 <= j && j <= mpl->n))
xfault(
"mpl_put_col_value: j = %d; column number out of range\n", j);
mpl->col[j]->prim = val;
return;
}
#endif
/*----------------------------------------------------------------------
-- mpl_postsolve - postsolve model.
--
-- *Synopsis*
--
-- #include "glpmpl.h"
-- int mpl_postsolve(MPL *mpl);
--
-- *Description*
--
-- The routine mpl_postsolve performs postsolving of the model using
-- its description stored in the translator database. This phase means
-- executing statements, which follow the solve statement.
--
-- If this routine is used, it should be called once after the routine
-- mpl_generate and if the latter returned the code 3.
--
-- *Returns*
--
-- The routine mpl_postsolve returns one of the following codes:
--
-- 3 - model has been successfully postsolved.
-- 4 - processing failed due to some errors. In this case the calling
-- program should call the routine mpl_terminate to terminate model
-- processing. */
int mpl_postsolve(MPL *mpl)
{ if (!(mpl->phase == 3 && !mpl->flag_p))
xfault("mpl_postsolve: invalid call sequence\n");
/* set up error handler */
if (setjmp(mpl->jump)) goto done;
/* perform postsolving */
postsolve_model(mpl);
flush_output(mpl);
/* postsolving phase has been finished */
xprintf("Model has been successfully processed\n");
done: /* return to the calling program */
return mpl->phase;
}
/*----------------------------------------------------------------------
-- mpl_terminate - free all resources used by translator.
--
-- *Synopsis*
--
-- #include "glpmpl.h"
-- void mpl_terminate(MPL *mpl);
--
-- *Description*
--
-- The routine mpl_terminate frees all the resources used by the GNU
-- MathProg translator. */
void mpl_terminate(MPL *mpl)
{ if (setjmp(mpl->jump)) xassert(mpl != mpl);
switch (mpl->phase)
{ case 0:
case 1:
case 2:
case 3:
/* there were no errors; clean the model content */
clean_model(mpl);
xassert(mpl->a_list == NULL);
#if 1 /* 11/II-2008 */
xassert(mpl->dca == NULL);
#endif
break;
case 4:
/* model processing has been finished due to error; delete
search trees, which may be created for some arrays */
{ ARRAY *a;
for (a = mpl->a_list; a != NULL; a = a->next)
if (a->tree != NULL) avl_delete_tree(a->tree);
}
#if 1 /* 11/II-2008 */
free_dca(mpl);
#endif
break;
default:
xassert(mpl != mpl);
}
/* delete the translator database */
xfree(mpl->image);
xfree(mpl->b_image);
xfree(mpl->f_image);
xfree(mpl->context);
dmp_delete_pool(mpl->pool);
avl_delete_tree(mpl->tree);
dmp_delete_pool(mpl->strings);
dmp_delete_pool(mpl->symbols);
dmp_delete_pool(mpl->tuples);
dmp_delete_pool(mpl->arrays);
dmp_delete_pool(mpl->members);
dmp_delete_pool(mpl->elemvars);
dmp_delete_pool(mpl->formulae);
dmp_delete_pool(mpl->elemcons);
xfree(mpl->sym_buf);
xfree(mpl->tup_buf);
rng_delete_rand(mpl->rand);
if (mpl->row != NULL) xfree(mpl->row);
if (mpl->col != NULL) xfree(mpl->col);
if (mpl->in_fp != NULL) glp_close(mpl->in_fp);
if (mpl->out_fp != NULL && mpl->out_fp != (void *)stdout)
glp_close(mpl->out_fp);
if (mpl->out_file != NULL) xfree(mpl->out_file);
if (mpl->prt_fp != NULL) glp_close(mpl->prt_fp);
if (mpl->prt_file != NULL) xfree(mpl->prt_file);
if (mpl->mod_file != NULL) xfree(mpl->mod_file);
xfree(mpl->mpl_buf);
xfree(mpl);
return;
}
/* eof */