You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							176 lines
						
					
					
						
							4.6 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							176 lines
						
					
					
						
							4.6 KiB
						
					
					
				
								// This file is part of Eigen, a lightweight C++ template library
							 | 
						|
								// for linear algebra.
							 | 
						|
								//
							 | 
						|
								// Copyright (C) 2012 Desire Nuentsa <desire.nuentsa_wakam@inria.fr>
							 | 
						|
								// Copyright (C) 2012 Gael Guennebaud <gael.guennebaud@inria.fr>
							 | 
						|
								//
							 | 
						|
								// This Source Code Form is subject to the terms of the Mozilla
							 | 
						|
								// Public License v. 2.0. If a copy of the MPL was not distributed
							 | 
						|
								// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
							 | 
						|
								#include <iostream>
							 | 
						|
								#include <fstream>
							 | 
						|
								#include <iomanip>
							 | 
						|
								
							 | 
						|
								#include "main.h"
							 | 
						|
								#include <Eigen/LevenbergMarquardt>
							 | 
						|
								
							 | 
						|
								using namespace std;
							 | 
						|
								using namespace Eigen;
							 | 
						|
								
							 | 
						|
								template <typename Scalar>
							 | 
						|
								struct sparseGaussianTest : SparseFunctor<Scalar, int>
							 | 
						|
								{
							 | 
						|
								  typedef Matrix<Scalar,Dynamic,1> VectorType;
							 | 
						|
								  typedef SparseFunctor<Scalar,int> Base;
							 | 
						|
								  typedef typename Base::JacobianType JacobianType;
							 | 
						|
								  sparseGaussianTest(int inputs, int values) : SparseFunctor<Scalar,int>(inputs,values)
							 | 
						|
								  { }
							 | 
						|
								  
							 | 
						|
								  VectorType model(const VectorType& uv, VectorType& x)
							 | 
						|
								  {
							 | 
						|
								    VectorType y; //Change this to use expression template
							 | 
						|
								    int m = Base::values(); 
							 | 
						|
								    int n = Base::inputs();
							 | 
						|
								    eigen_assert(uv.size()%2 == 0);
							 | 
						|
								    eigen_assert(uv.size() == n);
							 | 
						|
								    eigen_assert(x.size() == m);
							 | 
						|
								    y.setZero(m);
							 | 
						|
								    int half = n/2;
							 | 
						|
								    VectorBlock<const VectorType> u(uv, 0, half);
							 | 
						|
								    VectorBlock<const VectorType> v(uv, half, half);
							 | 
						|
								    Scalar coeff;
							 | 
						|
								    for (int j = 0; j < m; j++)
							 | 
						|
								    {
							 | 
						|
								      for (int i = 0; i < half; i++) 
							 | 
						|
								      {
							 | 
						|
								        coeff = (x(j)-i)/v(i);
							 | 
						|
								        coeff *= coeff;
							 | 
						|
								        if (coeff < 1. && coeff > 0.)
							 | 
						|
								          y(j) += u(i)*std::pow((1-coeff), 2);
							 | 
						|
								      }
							 | 
						|
								    }
							 | 
						|
								    return y;
							 | 
						|
								  }
							 | 
						|
								  void initPoints(VectorType& uv_ref, VectorType& x)
							 | 
						|
								  {
							 | 
						|
								    m_x = x;
							 | 
						|
								    m_y = this->model(uv_ref,x);
							 | 
						|
								  }
							 | 
						|
								  int operator()(const VectorType& uv, VectorType& fvec)
							 | 
						|
								  {
							 | 
						|
								    int m = Base::values(); 
							 | 
						|
								    int n = Base::inputs();
							 | 
						|
								    eigen_assert(uv.size()%2 == 0);
							 | 
						|
								    eigen_assert(uv.size() == n);
							 | 
						|
								    int half = n/2;
							 | 
						|
								    VectorBlock<const VectorType> u(uv, 0, half);
							 | 
						|
								    VectorBlock<const VectorType> v(uv, half, half);
							 | 
						|
								    fvec = m_y;
							 | 
						|
								    Scalar coeff;
							 | 
						|
								    for (int j = 0; j < m; j++)
							 | 
						|
								    {
							 | 
						|
								      for (int i = 0; i < half; i++)
							 | 
						|
								      {
							 | 
						|
								        coeff = (m_x(j)-i)/v(i);
							 | 
						|
								        coeff *= coeff;
							 | 
						|
								        if (coeff < 1. && coeff > 0.)
							 | 
						|
								          fvec(j) -= u(i)*std::pow((1-coeff), 2);
							 | 
						|
								      }
							 | 
						|
								    }
							 | 
						|
								    return 0;
							 | 
						|
								  }
							 | 
						|
								  
							 | 
						|
								  int df(const VectorType& uv, JacobianType& fjac)
							 | 
						|
								  {
							 | 
						|
								    int m = Base::values(); 
							 | 
						|
								    int n = Base::inputs();
							 | 
						|
								    eigen_assert(n == uv.size());
							 | 
						|
								    eigen_assert(fjac.rows() == m);
							 | 
						|
								    eigen_assert(fjac.cols() == n);
							 | 
						|
								    int half = n/2;
							 | 
						|
								    VectorBlock<const VectorType> u(uv, 0, half);
							 | 
						|
								    VectorBlock<const VectorType> v(uv, half, half);
							 | 
						|
								    Scalar coeff;
							 | 
						|
								    
							 | 
						|
								    //Derivatives with respect to u
							 | 
						|
								    for (int col = 0; col < half; col++)
							 | 
						|
								    {
							 | 
						|
								      for (int row = 0; row < m; row++)
							 | 
						|
								      {
							 | 
						|
								        coeff = (m_x(row)-col)/v(col);
							 | 
						|
								          coeff = coeff*coeff;
							 | 
						|
								        if(coeff < 1. && coeff > 0.)
							 | 
						|
								        {
							 | 
						|
								          fjac.coeffRef(row,col) = -(1-coeff)*(1-coeff);
							 | 
						|
								        }
							 | 
						|
								      }
							 | 
						|
								    }
							 | 
						|
								    //Derivatives with respect to v
							 | 
						|
								    for (int col = 0; col < half; col++)
							 | 
						|
								    {
							 | 
						|
								      for (int row = 0; row < m; row++)
							 | 
						|
								      {
							 | 
						|
								        coeff = (m_x(row)-col)/v(col);
							 | 
						|
								        coeff = coeff*coeff;
							 | 
						|
								        if(coeff < 1. && coeff > 0.)
							 | 
						|
								        {
							 | 
						|
								          fjac.coeffRef(row,col+half) = -4 * (u(col)/v(col))*coeff*(1-coeff);
							 | 
						|
								        }
							 | 
						|
								      }
							 | 
						|
								    }
							 | 
						|
								    return 0;
							 | 
						|
								  }
							 | 
						|
								  
							 | 
						|
								  VectorType m_x, m_y; //Data points
							 | 
						|
								};
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								template<typename T>
							 | 
						|
								void test_sparseLM_T()
							 | 
						|
								{
							 | 
						|
								  typedef Matrix<T,Dynamic,1> VectorType;
							 | 
						|
								  
							 | 
						|
								  int inputs = 10;
							 | 
						|
								  int values = 2000;
							 | 
						|
								  sparseGaussianTest<T> sparse_gaussian(inputs, values);
							 | 
						|
								  VectorType uv(inputs),uv_ref(inputs);
							 | 
						|
								  VectorType x(values);
							 | 
						|
								  // Generate the reference solution 
							 | 
						|
								  uv_ref << -2, 1, 4 ,8, 6, 1.8, 1.2, 1.1, 1.9 , 3;
							 | 
						|
								  //Generate the reference data points
							 | 
						|
								  x.setRandom();
							 | 
						|
								  x = 10*x;
							 | 
						|
								  x.array() += 10;
							 | 
						|
								  sparse_gaussian.initPoints(uv_ref, x);
							 | 
						|
								  
							 | 
						|
								  
							 | 
						|
								  // Generate the initial parameters 
							 | 
						|
								  VectorBlock<VectorType> u(uv, 0, inputs/2); 
							 | 
						|
								  VectorBlock<VectorType> v(uv, inputs/2, inputs/2);
							 | 
						|
								  v.setOnes();
							 | 
						|
								  //Generate u or Solve for u from v
							 | 
						|
								  u.setOnes();
							 | 
						|
								  
							 | 
						|
								  // Solve the optimization problem
							 | 
						|
								  LevenbergMarquardt<sparseGaussianTest<T> > lm(sparse_gaussian);
							 | 
						|
								  int info;
							 | 
						|
								//   info = lm.minimize(uv);
							 | 
						|
								  
							 | 
						|
								  VERIFY_IS_EQUAL(info,1);
							 | 
						|
								    // Do a step by step solution and save the residual 
							 | 
						|
								  int maxiter = 200;
							 | 
						|
								  int iter = 0;
							 | 
						|
								  MatrixXd Err(values, maxiter);
							 | 
						|
								  MatrixXd Mod(values, maxiter);
							 | 
						|
								  LevenbergMarquardtSpace::Status status; 
							 | 
						|
								  status = lm.minimizeInit(uv);
							 | 
						|
								  if (status==LevenbergMarquardtSpace::ImproperInputParameters)
							 | 
						|
								      return ;
							 | 
						|
								
							 | 
						|
								}
							 | 
						|
								void test_sparseLM()
							 | 
						|
								{
							 | 
						|
								  CALL_SUBTEST_1(test_sparseLM_T<double>());
							 | 
						|
								  
							 | 
						|
								  // CALL_SUBTEST_2(test_sparseLM_T<std::complex<double>());
							 | 
						|
								}
							 |