You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

147 lines
9.0 KiB

#include "storm/modelchecker/multiobjective/pcaa/SparseMdpRewardBoundedPcaaWeightVectorChecker.h"
#include "storm/adapters/RationalFunctionAdapter.h"
#include "storm/models/sparse/Mdp.h"
#include "storm/models/sparse/StandardRewardModel.h"
#include "storm/utility/macros.h"
#include "storm/utility/vector.h"
#include "storm/logic/Formulas.h"
#include "storm/solver/MinMaxLinearEquationSolver.h"
#include "storm/solver/LinearEquationSolver.h"
#include "storm/exceptions/InvalidPropertyException.h"
#include "storm/exceptions/InvalidOperationException.h"
#include "storm/exceptions/IllegalArgumentException.h"
#include "storm/exceptions/NotSupportedException.h"
#include "storm/exceptions/UnexpectedException.h"
namespace storm {
namespace modelchecker {
namespace multiobjective {
template <class SparseMdpModelType>
SparseMdpRewardBoundedPcaaWeightVectorChecker<SparseMdpModelType>::SparseMdpRewardBoundedPcaaWeightVectorChecker(SparseMultiObjectivePreprocessorResult<SparseMdpModelType> const& preprocessorResult) : PcaaWeightVectorChecker<SparseMdpModelType>(preprocessorResult.objectives), swAll(true), rewardUnfolding(*preprocessorResult.preprocessedModel, this->objectives, storm::storage::BitVector(preprocessorResult.preprocessedModel->getNumberOfChoices(), true), preprocessorResult.reward0EStates) {
STORM_LOG_THROW(preprocessorResult.rewardFinitenessType == SparseMultiObjectivePreprocessorResult<SparseMdpModelType>::RewardFinitenessType::AllFinite, storm::exceptions::NotSupportedException, "There is a scheduler that yields infinite reward for one objective. This is not supported.");
STORM_LOG_THROW(preprocessorResult.preprocessedModel->getInitialStates().getNumberOfSetBits() == 1, storm::exceptions::NotSupportedException, "The model has multiple initial states.");
}
template <class SparseMdpModelType>
void SparseMdpRewardBoundedPcaaWeightVectorChecker<SparseMdpModelType>::check(std::vector<ValueType> const& weightVector) {
auto initEpoch = rewardUnfolding.getStartEpoch();
auto epochOrder = rewardUnfolding.getEpochComputationOrder(initEpoch);
for (auto const& epoch : epochOrder) {
computeEpochSolution(epoch, weightVector);
}
auto solution = rewardUnfolding.getInitialStateResult(initEpoch);
// Todo: we currently assume precise results...
auto solutionIt = solution.begin();
++solutionIt;
underApproxResult = std::vector<ValueType>(solutionIt, solution.end());
overApproxResult = underApproxResult;
}
template <class SparseMdpModelType>
void SparseMdpRewardBoundedPcaaWeightVectorChecker<SparseMdpModelType>::computeEpochSolution(typename MultiDimensionalRewardUnfolding<ValueType, false>::Epoch const& epoch, std::vector<ValueType> const& weightVector) {
auto const& epochModel = rewardUnfolding.setCurrentEpoch(epoch);
swEqBuilding.start();
std::vector<typename MultiDimensionalRewardUnfolding<ValueType, false>::SolutionType> result(epochModel.inStates.getNumberOfSetBits());
// Formulate a min-max equation system max(A*x+b)=x for the weighted sum of the objectives
std::vector<ValueType> b(epochModel.epochMatrix.getRowCount(), storm::utility::zero<ValueType>());
for (uint64_t objIndex = 0; objIndex < this->objectives.size(); ++objIndex) {
ValueType weight = storm::solver::minimize(this->objectives[objIndex].formula->getOptimalityType()) ? -weightVector[objIndex] : weightVector[objIndex];
if (!storm::utility::isZero(weight)) {
std::vector<ValueType> const& objectiveReward = epochModel.objectiveRewards[objIndex];
for (auto const& choice : epochModel.objectiveRewardFilter[objIndex]) {
b[choice] += weight * objectiveReward[choice];
}
}
}
auto stepSolutionIt = epochModel.stepSolutions.begin();
for (auto const& choice : epochModel.stepChoices) {
b[choice] += stepSolutionIt->front();
++stepSolutionIt;
}
// Invoke the min max solver
storm::solver::GeneralMinMaxLinearEquationSolverFactory<ValueType> minMaxSolverFactory;
auto minMaxSolver = minMaxSolverFactory.create(epochModel.epochMatrix);
minMaxSolver->setOptimizationDirection(storm::solver::OptimizationDirection::Maximize);
minMaxSolver->setTrackScheduler(true);
//minMaxSolver->setCachingEnabled(true);
std::vector<ValueType> x(epochModel.epochMatrix.getRowGroupCount(), storm::utility::zero<ValueType>());
swEqBuilding.stop();
swMinMaxSolving.start();
minMaxSolver->solveEquations(x, b);
swMinMaxSolving.stop();
swEqBuilding.start();
auto resultIt = result.begin();
uint64_t solSize = this->objectives.size() + 1;
for (auto const& state : epochModel.inStates) {
resultIt->reserve(solSize);
resultIt->push_back(x[state]);
++resultIt;
}
// Formulate for each objective the linear equation system induced by the performed choices
auto const& choices = minMaxSolver->getSchedulerChoices();
storm::storage::SparseMatrix<ValueType> subMatrix = epochModel.epochMatrix.selectRowsFromRowGroups(choices, true);
subMatrix.convertToEquationSystem();
storm::solver::GeneralLinearEquationSolverFactory<ValueType> linEqSolverFactory;
auto linEqSolver = linEqSolverFactory.create(std::move(subMatrix));
b.resize(choices.size());
// TODO: start with a better initial guess
x.resize(choices.size());
for (uint64_t objIndex = 0; objIndex < this->objectives.size(); ++objIndex) {
std::vector<ValueType> const& objectiveReward = epochModel.objectiveRewards[objIndex];
for (uint64_t state = 0; state < choices.size(); ++state) {
uint64_t choice = epochModel.epochMatrix.getRowGroupIndices()[state] + choices[state];
if (epochModel.objectiveRewardFilter[objIndex].get(choice)) {
b[state] = objectiveReward[choice];
} else {
b[state] = storm::utility::zero<ValueType>();
}
if (epochModel.stepChoices.get(choice)) {
b[state] += epochModel.stepSolutions[epochModel.stepChoices.getNumberOfSetBitsBeforeIndex(choice)][objIndex + 1];
}
}
swEqBuilding.stop();
swLinEqSolving.start();
linEqSolver->solveEquations(x, b);
swLinEqSolving.stop();
swEqBuilding.start();
auto resultIt = result.begin();
for (auto const& state : epochModel.inStates) {
resultIt->push_back(x[state]);
++resultIt;
}
}
swEqBuilding.stop();
rewardUnfolding.setSolutionForCurrentEpoch(result);
}
template <class SparseMdpModelType>
std::vector<typename SparseMdpRewardBoundedPcaaWeightVectorChecker<SparseMdpModelType>::ValueType> SparseMdpRewardBoundedPcaaWeightVectorChecker<SparseMdpModelType>::getUnderApproximationOfInitialStateResults() const {
STORM_LOG_THROW(underApproxResult, storm::exceptions::InvalidOperationException, "Tried to retrieve results but check(..) has not been called before.");
return underApproxResult.get();
}
template <class SparseMdpModelType>
std::vector<typename SparseMdpRewardBoundedPcaaWeightVectorChecker<SparseMdpModelType>::ValueType> SparseMdpRewardBoundedPcaaWeightVectorChecker<SparseMdpModelType>::getOverApproximationOfInitialStateResults() const {
STORM_LOG_THROW(overApproxResult, storm::exceptions::InvalidOperationException, "Tried to retrieve results but check(..) has not been called before.");
return overApproxResult.get();
}
template class SparseMdpRewardBoundedPcaaWeightVectorChecker<storm::models::sparse::Mdp<double>>;
#ifdef STORM_HAVE_CARL
template class SparseMdpRewardBoundedPcaaWeightVectorChecker<storm::models::sparse::Mdp<storm::RationalNumber>>;
#endif
}
}
}