You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							149 lines
						
					
					
						
							5.3 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							149 lines
						
					
					
						
							5.3 KiB
						
					
					
				| // This file is part of Eigen, a lightweight C++ template library | |
| // for linear algebra. | |
| // | |
| // Copyright (C) 2008-2010 Gael Guennebaud <g.gael@free.fr> | |
| // | |
| // This Source Code Form is subject to the terms of the Mozilla | |
| // Public License v. 2.0. If a copy of the MPL was not distributed | |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | |
|  | |
| 
 | |
| // import basic and product tests for deprectaed DynamicSparseMatrix | |
| #define EIGEN_NO_DEPRECATED_WARNING | |
| #include "sparse_basic.cpp" | |
| #include "sparse_product.cpp" | |
| #include <Eigen/SparseExtra> | |
|  | |
| template<typename SetterType,typename DenseType, typename Scalar, int Options> | |
| bool test_random_setter(SparseMatrix<Scalar,Options>& sm, const DenseType& ref, const std::vector<Vector2i>& nonzeroCoords) | |
| { | |
|   typedef SparseMatrix<Scalar,Options> SparseType; | |
|   { | |
|     sm.setZero(); | |
|     SetterType w(sm); | |
|     std::vector<Vector2i> remaining = nonzeroCoords; | |
|     while(!remaining.empty()) | |
|     { | |
|       int i = internal::random<int>(0,static_cast<int>(remaining.size())-1); | |
|       w(remaining[i].x(),remaining[i].y()) = ref.coeff(remaining[i].x(),remaining[i].y()); | |
|       remaining[i] = remaining.back(); | |
|       remaining.pop_back(); | |
|     } | |
|   } | |
|   return sm.isApprox(ref); | |
| } | |
| 
 | |
| template<typename SetterType,typename DenseType, typename T> | |
| bool test_random_setter(DynamicSparseMatrix<T>& sm, const DenseType& ref, const std::vector<Vector2i>& nonzeroCoords) | |
| { | |
|   sm.setZero(); | |
|   std::vector<Vector2i> remaining = nonzeroCoords; | |
|   while(!remaining.empty()) | |
|   { | |
|     int i = internal::random<int>(0,static_cast<int>(remaining.size())-1); | |
|     sm.coeffRef(remaining[i].x(),remaining[i].y()) = ref.coeff(remaining[i].x(),remaining[i].y()); | |
|     remaining[i] = remaining.back(); | |
|     remaining.pop_back(); | |
|   } | |
|   return sm.isApprox(ref); | |
| } | |
| 
 | |
| template<typename SparseMatrixType> void sparse_extra(const SparseMatrixType& ref) | |
| { | |
|   typedef typename SparseMatrixType::Index Index; | |
|   const Index rows = ref.rows(); | |
|   const Index cols = ref.cols(); | |
|   typedef typename SparseMatrixType::Scalar Scalar; | |
|   enum { Flags = SparseMatrixType::Flags }; | |
| 
 | |
|   double density = (std::max)(8./(rows*cols), 0.01); | |
|   typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix; | |
|   typedef Matrix<Scalar,Dynamic,1> DenseVector; | |
|   Scalar eps = 1e-6; | |
| 
 | |
|   SparseMatrixType m(rows, cols); | |
|   DenseMatrix refMat = DenseMatrix::Zero(rows, cols); | |
|   DenseVector vec1 = DenseVector::Random(rows); | |
| 
 | |
|   std::vector<Vector2i> zeroCoords; | |
|   std::vector<Vector2i> nonzeroCoords; | |
|   initSparse<Scalar>(density, refMat, m, 0, &zeroCoords, &nonzeroCoords); | |
| 
 | |
|   if (zeroCoords.size()==0 || nonzeroCoords.size()==0) | |
|     return; | |
| 
 | |
|   // test coeff and coeffRef | |
|   for (int i=0; i<(int)zeroCoords.size(); ++i) | |
|   { | |
|     VERIFY_IS_MUCH_SMALLER_THAN( m.coeff(zeroCoords[i].x(),zeroCoords[i].y()), eps ); | |
|     if(internal::is_same<SparseMatrixType,SparseMatrix<Scalar,Flags> >::value) | |
|       VERIFY_RAISES_ASSERT( m.coeffRef(zeroCoords[0].x(),zeroCoords[0].y()) = 5 ); | |
|   } | |
|   VERIFY_IS_APPROX(m, refMat); | |
| 
 | |
|   m.coeffRef(nonzeroCoords[0].x(), nonzeroCoords[0].y()) = Scalar(5); | |
|   refMat.coeffRef(nonzeroCoords[0].x(), nonzeroCoords[0].y()) = Scalar(5); | |
| 
 | |
|   VERIFY_IS_APPROX(m, refMat); | |
| 
 | |
|   // random setter | |
| //   { | |
| //     m.setZero(); | |
| //     VERIFY_IS_NOT_APPROX(m, refMat); | |
| //     SparseSetter<SparseMatrixType, RandomAccessPattern> w(m); | |
| //     std::vector<Vector2i> remaining = nonzeroCoords; | |
| //     while(!remaining.empty()) | |
| //     { | |
| //       int i = internal::random<int>(0,remaining.size()-1); | |
| //       w->coeffRef(remaining[i].x(),remaining[i].y()) = refMat.coeff(remaining[i].x(),remaining[i].y()); | |
| //       remaining[i] = remaining.back(); | |
| //       remaining.pop_back(); | |
| //     } | |
| //   } | |
| //   VERIFY_IS_APPROX(m, refMat); | |
|  | |
|     VERIFY(( test_random_setter<RandomSetter<SparseMatrixType, StdMapTraits> >(m,refMat,nonzeroCoords) )); | |
|     #ifdef EIGEN_UNORDERED_MAP_SUPPORT | |
|     VERIFY(( test_random_setter<RandomSetter<SparseMatrixType, StdUnorderedMapTraits> >(m,refMat,nonzeroCoords) )); | |
|     #endif | |
|     #ifdef _DENSE_HASH_MAP_H_ | |
|     VERIFY(( test_random_setter<RandomSetter<SparseMatrixType, GoogleDenseHashMapTraits> >(m,refMat,nonzeroCoords) )); | |
|     #endif | |
|     #ifdef _SPARSE_HASH_MAP_H_ | |
|     VERIFY(( test_random_setter<RandomSetter<SparseMatrixType, GoogleSparseHashMapTraits> >(m,refMat,nonzeroCoords) )); | |
|     #endif | |
|  | |
| 
 | |
|   // test RandomSetter | |
|   /*{ | |
|     SparseMatrixType m1(rows,cols), m2(rows,cols); | |
|     DenseMatrix refM1 = DenseMatrix::Zero(rows, rows); | |
|     initSparse<Scalar>(density, refM1, m1); | |
|     { | |
|       Eigen::RandomSetter<SparseMatrixType > setter(m2); | |
|       for (int j=0; j<m1.outerSize(); ++j) | |
|         for (typename SparseMatrixType::InnerIterator i(m1,j); i; ++i) | |
|           setter(i.index(), j) = i.value(); | |
|     } | |
|     VERIFY_IS_APPROX(m1, m2); | |
|   }*/ | |
| 
 | |
| 
 | |
| } | |
| 
 | |
| void test_sparse_extra() | |
| { | |
|   for(int i = 0; i < g_repeat; i++) { | |
|     int s = Eigen::internal::random<int>(1,50); | |
|     CALL_SUBTEST_1( sparse_extra(SparseMatrix<double>(8, 8)) ); | |
|     CALL_SUBTEST_2( sparse_extra(SparseMatrix<std::complex<double> >(s, s)) ); | |
|     CALL_SUBTEST_1( sparse_extra(SparseMatrix<double>(s, s)) ); | |
| 
 | |
|     CALL_SUBTEST_3( sparse_extra(DynamicSparseMatrix<double>(s, s)) ); | |
| //    CALL_SUBTEST_3(( sparse_basic(DynamicSparseMatrix<double>(s, s)) )); | |
| //    CALL_SUBTEST_3(( sparse_basic(DynamicSparseMatrix<double,ColMajor,long int>(s, s)) )); | |
|  | |
|     CALL_SUBTEST_3( (sparse_product<DynamicSparseMatrix<float, ColMajor> >()) ); | |
|     CALL_SUBTEST_3( (sparse_product<DynamicSparseMatrix<float, RowMajor> >()) ); | |
|   } | |
| }
 |