You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

651 lines
39 KiB

#include "MonotonicityChecker.h"
#include "storm-pars/analysis/AssumptionMaker.h"
#include "storm-pars/analysis/AssumptionChecker.h"
#include "storm-pars/analysis/Lattice.h"
#include "storm-pars/analysis/LatticeExtender.h"
#include "storm/exceptions/NotSupportedException.h"
#include "storm/exceptions/UnexpectedException.h"
#include "storm/exceptions/InvalidOperationException.h"
#include "storm/utility/Stopwatch.h"
#include "storm/models/ModelType.h"
#include "storm/api/verification.h"
#include "storm-pars/api/storm-pars.h"
#include "storm/modelchecker/results/CheckResult.h"
#include "storm/modelchecker/results/ExplicitQuantitativeCheckResult.h"
#include "storm-pars/modelchecker/region/SparseDtmcParameterLiftingModelChecker.h"
namespace storm {
namespace analysis {
template <typename ValueType>
MonotonicityChecker<ValueType>::MonotonicityChecker(std::shared_ptr<storm::models::ModelBase> model, std::vector<std::shared_ptr<storm::logic::Formula const>> formulas, bool validate, uint_fast64_t numberOfSamples, double const& precision) {
assert (model != nullptr);
this->model = model;
this->formulas = formulas;
this->validate = validate;
this->precision = precision;
if (numberOfSamples > 0) {
// sampling
if (model->isOfType(storm::models::ModelType::Dtmc)) {
this->resultCheckOnSamples = std::map<typename utility::parametric::VariableType<ValueType>::type, std::pair<bool, bool>>(
checkOnSamples(model->as<storm::models::sparse::Dtmc<ValueType>>(), numberOfSamples));
} else if (model->isOfType(storm::models::ModelType::Mdp)) {
this->resultCheckOnSamples = std::map<typename utility::parametric::VariableType<ValueType>::type, std::pair<bool, bool>>(
checkOnSamples(model->as<storm::models::sparse::Mdp<ValueType>>(), numberOfSamples));
}
checkSamples= true;
} else {
checkSamples= false;
}
std::shared_ptr<storm::models::sparse::Model<ValueType>> sparseModel = model->as<storm::models::sparse::Model<ValueType>>();
this->extender = new storm::analysis::LatticeExtender<ValueType>(sparseModel);
}
template <typename ValueType>
std::map<storm::analysis::Lattice*, std::map<typename utility::parametric::VariableType<ValueType>::type, std::pair<bool, bool>>> MonotonicityChecker<ValueType>::checkMonotonicity() {
auto map = createLattice();
std::shared_ptr<storm::models::sparse::Model<ValueType>> sparseModel = model->as<storm::models::sparse::Model<ValueType>>();
auto matrix = sparseModel->getTransitionMatrix();
return checkMonotonicity(map, matrix);
}
template <typename ValueType>
std::map<storm::analysis::Lattice*, std::map<typename utility::parametric::VariableType<ValueType>::type, std::pair<bool, bool>>> MonotonicityChecker<ValueType>::checkMonotonicity(std::map<storm::analysis::Lattice*, std::vector<std::shared_ptr<storm::expressions::BinaryRelationExpression>>> map, storm::storage::SparseMatrix<ValueType> matrix) {
storm::utility::Stopwatch monotonicityCheckWatch(true);
std::map<storm::analysis::Lattice *, std::map<typename utility::parametric::VariableType<ValueType>::type, std::pair<bool, bool>>> result;
outfile.open(filename, std::ios_base::app);
if (map.size() == 0) {
// Nothing is known
outfile << " No assumptions -";
STORM_PRINT("No valid assumptions, couldn't build a sufficient lattice");
if (resultCheckOnSamples.size() != 0) {
STORM_PRINT("\n" << "Based results on samples");
} else {
outfile << " ?";
}
for (auto entry : resultCheckOnSamples) {
if (!entry.second.first && ! entry.second.second) {
outfile << " SX " << entry.first << " ";
} else if (entry.second.first && ! entry.second.second) {
outfile << " SI " << entry.first << " ";
} else if (entry.second.first && entry.second.second) {
outfile << " SC " << entry.first << " ";
} else {
outfile << " SD " << entry.first << " ";
}
}
} else {
auto i = 0;
for (auto itr = map.begin(); i < map.size() && itr != map.end(); ++itr) {
auto lattice = itr->first;
auto addedStates = lattice->getAddedStates()->getNumberOfSetBits();
assert (addedStates == lattice->getAddedStates()->size());
std::map<typename utility::parametric::VariableType<ValueType>::type, std::pair<bool, bool>> varsMonotone = analyseMonotonicity(i, lattice,
matrix);
auto assumptions = itr->second;
if (assumptions.size() > 0) {
bool first = true;
for (auto itr2 = assumptions.begin(); itr2 != assumptions.end(); ++itr2) {
if (!first) {
outfile << (" ^ ");
} else {
first = false;
}
outfile << (*(*itr2));
}
outfile << " - ";
} else if (assumptions.size() == 0) {
outfile << "No assumptions - ";
}
if (varsMonotone.size() == 0) {
outfile << "No params";
} else {
auto itr2 = varsMonotone.begin();
while (itr2 != varsMonotone.end()) {
if (checkSamples &&
resultCheckOnSamples.find(itr2->first) != resultCheckOnSamples.end() &&
(!resultCheckOnSamples[itr2->first].first &&
!resultCheckOnSamples[itr2->first].second)) {
outfile << "X " << itr2->first;
} else {
if (itr2->second.first && itr2->second.second) {
outfile << "C " << itr2->first;
} else if (itr2->second.first) {
outfile << "I " << itr2->first;
} else if (itr2->second.second) {
outfile << "D " << itr2->first;
} else {
outfile << "? " << itr2->first;
}
}
++itr2;
if (itr2 != varsMonotone.end()) {
outfile << " ";
}
}
result.insert(
std::pair<storm::analysis::Lattice *, std::map<typename utility::parametric::VariableType<ValueType>::type, std::pair<bool, bool>>>(
lattice, varsMonotone));
}
++i;
outfile << ";";
}
}
outfile << ", ";
monotonicityCheckWatch.stop();
outfile.close();
return result;
}
template <typename ValueType>
std::map<storm::analysis::Lattice*, std::vector<std::shared_ptr<storm::expressions::BinaryRelationExpression>>> MonotonicityChecker<ValueType>::createLattice() {
// Transform to Lattices
storm::utility::Stopwatch latticeWatch(true);
std::tuple<storm::analysis::Lattice*, uint_fast64_t, uint_fast64_t> criticalTuple = extender->toLattice(formulas);
std::map<storm::analysis::Lattice*, std::vector<std::shared_ptr<storm::expressions::BinaryRelationExpression>>> result;
auto val1 = std::get<1>(criticalTuple);
auto val2 = std::get<2>(criticalTuple);
auto numberOfStates = model->getNumberOfStates();
std::vector<std::shared_ptr<storm::expressions::BinaryRelationExpression>> assumptions;
if (val1 == numberOfStates && val2 == numberOfStates) {
result.insert(std::pair<storm::analysis::Lattice*, std::vector<std::shared_ptr<storm::expressions::BinaryRelationExpression>>>(std::get<0>(criticalTuple), assumptions));
} else if (val1 != numberOfStates && val2 != numberOfStates) {
storm::analysis::AssumptionChecker<ValueType> *assumptionChecker;
if (model->isOfType(storm::models::ModelType::Dtmc)) {
auto dtmc = model->as<storm::models::sparse::Dtmc<ValueType>>();
assumptionChecker = new storm::analysis::AssumptionChecker<ValueType>(formulas[0], dtmc, 3);
} else if (model->isOfType(storm::models::ModelType::Mdp)) {
auto mdp = model->as<storm::models::sparse::Mdp<ValueType>>();
assumptionChecker = new storm::analysis::AssumptionChecker<ValueType>(formulas[0], mdp, 3);
} else {
STORM_LOG_THROW(false, storm::exceptions::InvalidOperationException,
"Unable to perform monotonicity analysis on the provided model type.");
}
auto assumptionMaker = new storm::analysis::AssumptionMaker<ValueType>(assumptionChecker, numberOfStates, validate);
result = extendLatticeWithAssumptions(std::get<0>(criticalTuple), assumptionMaker, val1, val2, assumptions);
} else {
assert(false);
}
latticeWatch.stop();
return result;
}
template <typename ValueType>
std::map<storm::analysis::Lattice*, std::vector<std::shared_ptr<storm::expressions::BinaryRelationExpression>>> MonotonicityChecker<ValueType>::extendLatticeWithAssumptions(storm::analysis::Lattice* lattice, storm::analysis::AssumptionMaker<ValueType>* assumptionMaker, uint_fast64_t val1, uint_fast64_t val2, std::vector<std::shared_ptr<storm::expressions::BinaryRelationExpression>> assumptions) {
std::map<storm::analysis::Lattice*, std::vector<std::shared_ptr<storm::expressions::BinaryRelationExpression>>> result;
auto numberOfStates = model->getNumberOfStates();
if (val1 == numberOfStates || val2 == numberOfStates) {
assert (val1 == val2);
assert (lattice->getAddedStates()->size() == lattice->getAddedStates()->getNumberOfSetBits());
result.insert(std::pair<storm::analysis::Lattice*, std::vector<std::shared_ptr<storm::expressions::BinaryRelationExpression>>>(lattice, assumptions));
} else {
// Make the three assumptions
auto assumptionTriple = assumptionMaker->createAndCheckAssumption(val1, val2, lattice);
assert (assumptionTriple.size() == 3);
auto itr = assumptionTriple.begin();
auto assumption1 = *itr;
++itr;
auto assumption2 = *itr;
++itr;
auto assumption3 = *itr;
if (assumption1.second != AssumptionStatus::INVALID) {
auto latticeCopy = new Lattice(lattice);
auto assumptionsCopy = std::vector<std::shared_ptr<storm::expressions::BinaryRelationExpression>>(assumptions);
if (assumption1.second == AssumptionStatus::UNKNOWN) {
// only add assumption to the set of assumptions if it is unknown if it is valid
assumptionsCopy.push_back(assumption1.first);
}
auto criticalTuple = extender->extendLattice(latticeCopy, assumption1.first);
if (somewhereMonotonicity(std::get<0>(criticalTuple))) {
auto map = extendLatticeWithAssumptions(std::get<0>(criticalTuple), assumptionMaker,
std::get<1>(criticalTuple), std::get<2>(criticalTuple),
assumptionsCopy);
result.insert(map.begin(), map.end());
}
}
if (assumption2.second != AssumptionStatus::INVALID) {
auto latticeCopy = new Lattice(lattice);
auto assumptionsCopy = std::vector<std::shared_ptr<storm::expressions::BinaryRelationExpression>>(assumptions);
if (assumption2.second == AssumptionStatus::UNKNOWN) {
assumptionsCopy.push_back(assumption2.first);
}
auto criticalTuple = extender->extendLattice(latticeCopy, assumption2.first);
if (somewhereMonotonicity(std::get<0>(criticalTuple))) {
auto map = extendLatticeWithAssumptions(std::get<0>(criticalTuple), assumptionMaker,
std::get<1>(criticalTuple), std::get<2>(criticalTuple),
assumptionsCopy);
result.insert(map.begin(), map.end());
}
}
if (assumption3.second != AssumptionStatus::INVALID) {
// Here we can use the original lattice and assumptions set
if (assumption3.second == AssumptionStatus::UNKNOWN) {
assumptions.push_back(assumption3.first);
}
auto criticalTuple = extender->extendLattice(lattice, assumption3.first);
if (somewhereMonotonicity(std::get<0>(criticalTuple))) {
auto map = extendLatticeWithAssumptions(std::get<0>(criticalTuple), assumptionMaker,
std::get<1>(criticalTuple), std::get<2>(criticalTuple),
assumptions);
result.insert(map.begin(), map.end());
}
}
}
return result;
}
template <typename ValueType>
ValueType MonotonicityChecker<ValueType>::getDerivative(ValueType function, typename utility::parametric::VariableType<ValueType>::type var) {
if (function.isConstant()) {
return storm::utility::zero<ValueType>();
}
if ((derivatives[function]).find(var) == (derivatives[function]).end()) {
(derivatives[function])[var] = function.derivative(var);
}
return (derivatives[function])[var];
}
template <typename ValueType>
std::map<typename utility::parametric::VariableType<ValueType>::type, std::pair<bool, bool>> MonotonicityChecker<ValueType>::analyseMonotonicity(uint_fast64_t j, storm::analysis::Lattice* lattice, storm::storage::SparseMatrix<ValueType> matrix) {
std::map<typename utility::parametric::VariableType<ValueType>::type, std::pair<bool, bool>> varsMonotone;
// go over all rows, check for each row local monotonicity
for (uint_fast64_t i = 0; i < matrix.getColumnCount(); ++i) {
auto row = matrix.getRow(i);
// only enter if you are in a state with at least two successors (so there must be successors,
// and first prob shouldn't be 1)
if (row.begin() != row.end() && !row.begin()->getValue().isOne()) {
std::map<uint_fast64_t, ValueType> transitions;
// Gather all states which are reached with a non constant probability
auto states = new storm::storage::BitVector(matrix.getColumnCount());
std::set<typename utility::parametric::VariableType<ValueType>::type> vars;
for (auto const& entry : row) {
if (!entry.getValue().isConstant()) {
// only analyse take non constant transitions
transitions.insert(std::pair<uint_fast64_t, ValueType>(entry.getColumn(), entry.getValue()));
for (auto const& var:entry.getValue().gatherVariables()) {
vars.insert(var);
states->set(entry.getColumn());
}
}
}
// Copy info from checkOnSamples
if (checkSamples) {
for (auto var : vars) {
assert (resultCheckOnSamples.find(var) != resultCheckOnSamples.end());
if (varsMonotone.find(var) == varsMonotone.end()) {
varsMonotone[var].first = resultCheckOnSamples[var].first;
varsMonotone[var].second = resultCheckOnSamples[var].second;
} else {
varsMonotone[var].first &= resultCheckOnSamples[var].first;
varsMonotone[var].second &= resultCheckOnSamples[var].second;
}
}
} else {
for (auto var : vars) {
if (varsMonotone.find(var) == varsMonotone.end()) {
varsMonotone[var].first = true;
varsMonotone[var].second = true;
}
}
}
// Sort the states based on the lattice
auto sortedStates = lattice->sortStates(states);
if (sortedStates[sortedStates.size() - 1] == matrix.getColumnCount()) {
// If the states are not all sorted, we still might obtain some monotonicity
for (auto var: vars) {
// current value of monotonicity
std::pair<bool, bool> *value = &varsMonotone.find(var)->second;
// Go over all transitions to successor states, compare all of them
for (auto itr2 = transitions.begin(); (value->first || value->second)
&& itr2 != transitions.end(); ++itr2) {
for (auto itr3 = transitions.begin(); (value->first || value->second)
&& itr3 != transitions.end(); ++itr3) {
if (itr2->first < itr3->first) {
auto derivative2 = getDerivative(itr2->second, var);
auto derivative3 = getDerivative(itr3->second, var);
auto compare = lattice->compare(itr2->first, itr3->first);
if (compare == Lattice::ABOVE) {
// As the first state (itr2) is above the second state (itr3) it
// is sufficient to look at the derivative of itr2.
std::pair<bool, bool> mon2;
mon2 = checkDerivative(derivative2);
value->first &= mon2.first;
value->second &= mon2.second;
} else if (compare == Lattice::BELOW) {
// As the second state (itr3) is above the first state (itr2) it
// is sufficient to look at the derivative of itr3.
std::pair<bool, bool> mon3;
mon3 = checkDerivative(derivative3);
value->first &= mon3.first;
value->second &= mon3.second;
} else if (compare == Lattice::SAME) {
// Behaviour doesn't matter, as the states are at the same level.
} else {
// only if derivatives are the same we can continue
if (derivative2 != derivative3) {
// As the relation between the states is unknown, we can't claim
// anything about the monotonicity.
value->first = false;
value->second = false;
}
}
}
}
}
}
} else {
// The states are all sorted
for (auto var : vars) {
std::pair<bool, bool> *value = &varsMonotone.find(var)->second;
bool change = false;
for (auto const &i : sortedStates) {
auto res = checkDerivative(getDerivative(transitions[i], var));
change = change || (!(value->first && value->second) // they do not hold both
&& ((value->first && !res.first)
|| (value->second && !res.second)));
if (change) {
value->first &= res.second;
value->second &= res.first;
} else {
value->first &= res.first;
value->second &= res.second;
}
if (!value->first && !value->second) {
break;
}
}
}
}
}
}
return varsMonotone;
}
template <typename ValueType>
bool MonotonicityChecker<ValueType>::somewhereMonotonicity(Lattice* lattice) {
std::shared_ptr<storm::models::sparse::Model<ValueType>> sparseModel = model->as<storm::models::sparse::Model<ValueType>>();
auto matrix = sparseModel->getTransitionMatrix();
std::map<typename utility::parametric::VariableType<ValueType>::type, std::pair<bool, bool>> varsMonotone;
for (uint_fast64_t i = 0; i < matrix.getColumnCount(); ++i) {
// go over all rows
auto row = matrix.getRow(i);
auto first = (*row.begin());
if (first.getValue() != ValueType(1)) {
std::map<uint_fast64_t, ValueType> transitions;
for (auto itr = row.begin(); itr != row.end(); ++itr) {
transitions.insert(std::pair<uint_fast64_t, ValueType>((*itr).getColumn(), (*itr).getValue()));
}
auto val = first.getValue();
auto vars = val.gatherVariables();
// Copy info from checkOnSamples
if (checkSamples) {
for (auto var : vars) {
assert (resultCheckOnSamples.find(var) != resultCheckOnSamples.end());
if (varsMonotone.find(var) == varsMonotone.end()) {
varsMonotone[var].first = resultCheckOnSamples[var].first;
varsMonotone[var].second = resultCheckOnSamples[var].second;
} else {
varsMonotone[var].first &= resultCheckOnSamples[var].first;
varsMonotone[var].second &= resultCheckOnSamples[var].second;
}
}
} else {
for (auto var : vars) {
if (varsMonotone.find(var) == varsMonotone.end()) {
varsMonotone[var].first = true;
varsMonotone[var].second = true;
}
}
}
for (auto var: vars) {
// current value of monotonicity
std::pair<bool, bool> *value = &varsMonotone.find(var)->second;
// Go over all transitions to successor states, compare all of them
for (auto itr2 = transitions.begin(); (value->first || value->second)
&& itr2 != transitions.end(); ++itr2) {
for (auto itr3 = transitions.begin(); (value->first || value->second)
&& itr3 != transitions.end(); ++itr3) {
if (itr2->first < itr3->first) {
auto derivative2 = getDerivative(itr2->second, var);
auto derivative3 = getDerivative(itr3->second, var);
auto compare = lattice->compare(itr2->first, itr3->first);
if (compare == Lattice::ABOVE) {
// As the first state (itr2) is above the second state (itr3) it
// is sufficient to look at the derivative of itr2.
std::pair<bool, bool> mon2;
mon2 = checkDerivative(derivative2);
value->first &= mon2.first;
value->second &= mon2.second;
} else if (compare == Lattice::BELOW) {
// As the second state (itr3) is above the first state (itr2) it
// is sufficient to look at the derivative of itr3.
std::pair<bool, bool> mon3;
mon3 = checkDerivative(derivative3);
value->first &= mon3.first;
value->second &= mon3.second;
} else if (compare == Lattice::SAME) {
// Behaviour doesn't matter, as the states are at the same level.
} else {
// As the relation between the states is unknown, we don't do anything
}
}
}
}
}
}
}
bool result = false;
for (auto itr = varsMonotone.begin(); !result && itr != varsMonotone.end(); ++itr) {
result = itr->second.first || itr->second.second;
}
return result;
}
template <typename ValueType>
std::map<typename utility::parametric::VariableType<ValueType>::type, std::pair<bool, bool>> MonotonicityChecker<ValueType>::checkOnSamples(std::shared_ptr<storm::models::sparse::Dtmc<ValueType>> model, uint_fast64_t numberOfSamples) {
storm::utility::Stopwatch samplesWatch(true);
std::map<typename utility::parametric::VariableType<ValueType>::type, std::pair<bool, bool>> result;
auto instantiator = storm::utility::ModelInstantiator<storm::models::sparse::Dtmc<ValueType>, storm::models::sparse::Dtmc<double>>(*model);
auto matrix = model->getTransitionMatrix();
std::set<typename utility::parametric::VariableType<ValueType>::type> variables = storm::models::sparse::getProbabilityParameters(*model);
for (auto itr = variables.begin(); itr != variables.end(); ++itr) {
double previous = -1;
bool monDecr = true;
bool monIncr = true;
for (auto i = 0; (monDecr || monIncr) && i < numberOfSamples; ++i) {
auto valuation = storm::utility::parametric::Valuation<ValueType>();
for (auto itr2 = variables.begin(); itr2 != variables.end(); ++itr2) {
// Only change value for current variable
if ((*itr) == (*itr2)) {
auto val = std::pair<typename utility::parametric::VariableType<ValueType>::type, typename utility::parametric::CoefficientType<ValueType>::type>(
(*itr2), storm::utility::convertNumber<typename utility::parametric::CoefficientType<ValueType>::type>(
boost::lexical_cast<std::string>((i + 1) / (double(numberOfSamples + 1)))));
valuation.insert(val);
assert (0 < val.second && val.second < 1);
} else {
auto val = std::pair<typename utility::parametric::VariableType<ValueType>::type, typename utility::parametric::CoefficientType<ValueType>::type>(
(*itr2), storm::utility::convertNumber<typename utility::parametric::CoefficientType<ValueType>::type>(
boost::lexical_cast<std::string>((1) / (double(numberOfSamples + 1)))));
valuation.insert(val);
assert (0 < val.second && val.second < 1);
}
}
storm::models::sparse::Dtmc<double> sampleModel = instantiator.instantiate(valuation);
auto checker = storm::modelchecker::SparseDtmcPrctlModelChecker<storm::models::sparse::Dtmc<double>>(sampleModel);
std::unique_ptr<storm::modelchecker::CheckResult> checkResult;
auto formula = formulas[0];
if (formula->isProbabilityOperatorFormula() &&
formula->asProbabilityOperatorFormula().getSubformula().isUntilFormula()) {
const storm::modelchecker::CheckTask<storm::logic::UntilFormula, double> checkTask = storm::modelchecker::CheckTask<storm::logic::UntilFormula, double>(
(*formula).asProbabilityOperatorFormula().getSubformula().asUntilFormula());
checkResult = checker.computeUntilProbabilities(Environment(), checkTask);
} else if (formula->isProbabilityOperatorFormula() &&
formula->asProbabilityOperatorFormula().getSubformula().isEventuallyFormula()) {
const storm::modelchecker::CheckTask<storm::logic::EventuallyFormula, double> checkTask = storm::modelchecker::CheckTask<storm::logic::EventuallyFormula, double>(
(*formula).asProbabilityOperatorFormula().getSubformula().asEventuallyFormula());
checkResult = checker.computeReachabilityProbabilities(Environment(), checkTask);
} else {
STORM_LOG_THROW(false, storm::exceptions::NotSupportedException,
"Expecting until or eventually formula");
}
auto quantitativeResult = checkResult->asExplicitQuantitativeCheckResult<double>();
std::vector<double> values = quantitativeResult.getValueVector();
auto initialStates = model->getInitialStates();
double initial = 0;
for (auto j = initialStates.getNextSetIndex(0); j < model->getNumberOfStates(); j = initialStates.getNextSetIndex(j+1)) {
initial += values[j];
}
assert (initial >= 0-precision && initial <= 1+precision);
double diff = previous - initial;
assert (previous == -1 || diff >= -1-precision && diff <= 1 + precision);
if (previous != -1 && (diff > precision || diff < -precision)) {
monDecr &= diff > precision; // then previous value is larger than the current value from the initial states
monIncr &= diff < -precision;
}
previous = initial;
}
result.insert(std::pair<typename utility::parametric::VariableType<ValueType>::type, std::pair<bool, bool>>(*itr, std::pair<bool,bool>(monIncr, monDecr)));
}
samplesWatch.stop();
resultCheckOnSamples = result;
return result;
}
template <typename ValueType>
std::map<typename utility::parametric::VariableType<ValueType>::type, std::pair<bool, bool>> MonotonicityChecker<ValueType>::checkOnSamples(std::shared_ptr<storm::models::sparse::Mdp<ValueType>> model, uint_fast64_t numberOfSamples) {
storm::utility::Stopwatch samplesWatch(true);
std::map<typename utility::parametric::VariableType<ValueType>::type, std::pair<bool, bool>> result;
auto instantiator = storm::utility::ModelInstantiator<storm::models::sparse::Mdp<ValueType>, storm::models::sparse::Mdp<double>>(*model);
auto matrix = model->getTransitionMatrix();
std::set<typename utility::parametric::VariableType<ValueType>::type> variables = storm::models::sparse::getProbabilityParameters(*model);
for (auto itr = variables.begin(); itr != variables.end(); ++itr) {
double previous = -1;
bool monDecr = true;
bool monIncr = true;
for (auto i = 0; i < numberOfSamples; ++i) {
auto valuation = storm::utility::parametric::Valuation<ValueType>();
for (auto itr2 = variables.begin(); itr2 != variables.end(); ++itr2) {
// Only change value for current variable
if ((*itr) == (*itr2)) {
auto val = std::pair<typename utility::parametric::VariableType<ValueType>::type, typename utility::parametric::CoefficientType<ValueType>::type>(
(*itr2), storm::utility::convertNumber<typename utility::parametric::CoefficientType<ValueType>::type>(
boost::lexical_cast<std::string>((i + 1) / (double(numberOfSamples + 1)))));
valuation.insert(val);
} else {
auto val = std::pair<typename utility::parametric::VariableType<ValueType>::type, typename utility::parametric::CoefficientType<ValueType>::type>(
(*itr2), storm::utility::convertNumber<typename utility::parametric::CoefficientType<ValueType>::type>(
boost::lexical_cast<std::string>((1) / (double(numberOfSamples + 1)))));
valuation.insert(val);
}
}
storm::models::sparse::Mdp<double> sampleModel = instantiator.instantiate(valuation);
auto checker = storm::modelchecker::SparseMdpPrctlModelChecker<storm::models::sparse::Mdp<double>>(sampleModel);
std::unique_ptr<storm::modelchecker::CheckResult> checkResult;
auto formula = formulas[0];
if (formula->isProbabilityOperatorFormula() &&
formula->asProbabilityOperatorFormula().getSubformula().isUntilFormula()) {
const storm::modelchecker::CheckTask<storm::logic::UntilFormula, double> checkTask = storm::modelchecker::CheckTask<storm::logic::UntilFormula, double>(
(*formula).asProbabilityOperatorFormula().getSubformula().asUntilFormula());
checkResult = checker.computeUntilProbabilities(Environment(), checkTask);
} else if (formula->isProbabilityOperatorFormula() &&
formula->asProbabilityOperatorFormula().getSubformula().isEventuallyFormula()) {
const storm::modelchecker::CheckTask<storm::logic::EventuallyFormula, double> checkTask = storm::modelchecker::CheckTask<storm::logic::EventuallyFormula, double>(
(*formula).asProbabilityOperatorFormula().getSubformula().asEventuallyFormula());
checkResult = checker.computeReachabilityProbabilities(Environment(), checkTask);
} else {
STORM_LOG_THROW(false, storm::exceptions::NotSupportedException,
"Expecting until or eventually formula");
}
auto quantitativeResult = checkResult->asExplicitQuantitativeCheckResult<double>();
std::vector<double> values = quantitativeResult.getValueVector();
auto initialStates = model->getInitialStates();
double initial = 0;
for (auto i = initialStates.getNextSetIndex(0); i < model->getNumberOfStates(); i = initialStates.getNextSetIndex(i+1)) {
initial += values[i];
}
assert (initial >= precision && initial <= 1+precision);
double diff = previous - initial;
assert (previous == -1 || diff >= -1-precision && diff <= 1 + precision);
if (previous != -1 && (diff > precision || diff < -precision)) {
monDecr &= diff > precision; // then previous value is larger than the current value from the initial states
monIncr &= diff < -precision;
}
previous = initial;
}
result.insert(std::pair<typename utility::parametric::VariableType<ValueType>::type, std::pair<bool, bool>>(*itr, std::pair<bool,bool>(monIncr, monDecr)));
}
samplesWatch.stop();
resultCheckOnSamples = result;
return result;
}
template class MonotonicityChecker<storm::RationalFunction>;
}
}