You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

81 lines
5.5 KiB

#include "src/modelchecker/multiobjective/helper/SparseMdpMultiObjectiveWeightVectorChecker.h"
#include "src/adapters/CarlAdapter.h"
#include "src/models/sparse/Mdp.h"
#include "src/models/sparse/StandardRewardModel.h"
#include "src/utility/macros.h"
#include "src/utility/vector.h"
namespace storm {
namespace modelchecker {
namespace helper {
template <class SparseMdpModelType>
SparseMdpMultiObjectiveWeightVectorChecker<SparseMdpModelType>::SparseMdpMultiObjectiveWeightVectorChecker(PreprocessorData const& data) : SparseMultiObjectiveWeightVectorChecker<SparseMdpModelType>(data) {
// set the state action rewards
for(uint_fast64_t objIndex = 0; objIndex < data.objectives.size(); ++objIndex) {
STORM_LOG_ASSERT(!this->data.preprocessedModel.getRewardModel(this->data.objectives[objIndex].rewardModelName).hasTransitionRewards(), "Reward model has transition rewards which is not expected.");
this->discreteActionRewards[objIndex] = this->data.preprocessedModel.getRewardModel(this->data.objectives[objIndex].rewardModelName).getTotalRewardVector(this->data.preprocessedModel.getTransitionMatrix());
}
}
template <class SparseMdpModelType>
void SparseMdpMultiObjectiveWeightVectorChecker<SparseMdpModelType>::boundedPhase(std::vector<ValueType> const& weightVector, std::vector<ValueType>& weightedRewardVector) {
// Allocate some memory so this does not need to happen for each time epoch
std::vector<uint_fast64_t> optimalChoicesInCurrentEpoch(this->data.preprocessedModel.getNumberOfStates());
std::vector<ValueType> choiceValues(weightedRewardVector.size());
std::vector<ValueType> temporaryResult(this->data.preprocessedModel.getNumberOfStates());
// Get for each occurring timeBound the indices of the objectives with that bound.
std::map<uint_fast64_t, storm::storage::BitVector, std::greater<uint_fast64_t>> timeBounds;
storm::storage::BitVector boundedObjectives = ~this->unboundedObjectives;
for(uint_fast64_t objIndex : boundedObjectives) {
uint_fast64_t timeBound = boost::get<uint_fast64_t>(this->data.objectives[objIndex].timeBounds.get());
auto timeBoundIt = timeBounds.insert(std::make_pair(timeBound, storm::storage::BitVector(this->data.objectives.size(), false))).first;
timeBoundIt->second.set(objIndex);
}
storm::storage::BitVector objectivesAtCurrentEpoch = this->unboundedObjectives;
auto timeBoundIt = timeBounds.begin();
for(uint_fast64_t currentEpoch = timeBoundIt->first; currentEpoch > 0; --currentEpoch) {
if(timeBoundIt != timeBounds.end() && currentEpoch == timeBoundIt->first) {
objectivesAtCurrentEpoch |= timeBoundIt->second;
for(auto objIndex : timeBoundIt->second) {
storm::utility::vector::addScaledVector(weightedRewardVector, this->discreteActionRewards[objIndex], weightVector[objIndex]);
}
++timeBoundIt;
}
// Get values and scheduler for weighted sum of objectives
this->data.preprocessedModel.getTransitionMatrix().multiplyWithVector(this->weightedResult, choiceValues);
storm::utility::vector::addVectors(choiceValues, weightedRewardVector, choiceValues);
storm::utility::vector::reduceVectorMax(choiceValues, this->weightedResult, this->data.preprocessedModel.getTransitionMatrix().getRowGroupIndices(), &optimalChoicesInCurrentEpoch);
// get values for individual objectives
// TODO we could compute the result for one of the objectives from the weighted result, the given weight vector, and the remaining objective results.
for(auto objIndex : objectivesAtCurrentEpoch) {
std::vector<ValueType>& objectiveResult = this->objectiveResults[objIndex];
std::vector<ValueType> objectiveRewards = this->discreteActionRewards[objIndex];
auto rowGroupIndexIt = this->data.preprocessedModel.getTransitionMatrix().getRowGroupIndices().begin();
auto optimalChoiceIt = optimalChoicesInCurrentEpoch.begin();
for(ValueType& stateValue : temporaryResult){
uint_fast64_t row = (*rowGroupIndexIt) + (*optimalChoiceIt);
++rowGroupIndexIt;
++optimalChoiceIt;
stateValue = objectiveRewards[row];
for(auto const& entry : this->data.preprocessedModel.getTransitionMatrix().getRow(row)) {
stateValue += entry.getValue() * objectiveResult[entry.getColumn()];
}
}
objectiveResult.swap(temporaryResult);
}
}
}
template class SparseMdpMultiObjectiveWeightVectorChecker<storm::models::sparse::Mdp<double>>;
#ifdef STORM_HAVE_CARL
template class SparseMdpMultiObjectiveWeightVectorChecker<storm::models::sparse::Mdp<storm::RationalNumber>>;
#endif
}
}
}