You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
376 lines
18 KiB
376 lines
18 KiB
#include <queue>
|
|
#include <set>
|
|
#include <string>
|
|
|
|
#include "macros.h"
|
|
#include "shortestPaths.h"
|
|
#include "graph.h"
|
|
|
|
// FIXME: I've accidentally used k=0 *twice* now without realizing that k>=1 is required!
|
|
// Accessing zero should trigger a warning!
|
|
// (Also, did I document this? I think so, somewhere. I went with k>=1 because
|
|
// that's what the KSP paper used, but in retrospect k>=0 seems more intuitive ...)
|
|
|
|
namespace storm {
|
|
namespace utility {
|
|
namespace ksp {
|
|
template <typename T>
|
|
ShortestPathsGenerator<T>::ShortestPathsGenerator(storage::SparseMatrix<T> const& transitionMatrix,
|
|
std::unordered_map<state_t, T> const& targetProbMap,
|
|
BitVector const& initialStates,
|
|
MatrixFormat matrixFormat) :
|
|
transitionMatrix(transitionMatrix),
|
|
numStates(transitionMatrix.getColumnCount() + 1), // one more for meta-target
|
|
metaTarget(transitionMatrix.getColumnCount()), // first unused state index
|
|
initialStates(initialStates),
|
|
targetProbMap(targetProbMap),
|
|
matrixFormat(matrixFormat) {
|
|
|
|
computePredecessors();
|
|
|
|
// gives us SP-predecessors, SP-distances
|
|
performDijkstra();
|
|
|
|
computeSPSuccessors();
|
|
|
|
// constructs the recursive shortest path representations
|
|
initializeShortestPaths();
|
|
|
|
candidatePaths.resize(numStates);
|
|
}
|
|
|
|
template <typename T>
|
|
ShortestPathsGenerator<T>::ShortestPathsGenerator(storage::SparseMatrix<T> const& transitionMatrix,
|
|
std::vector<T> const& targetProbVector, BitVector const& initialStates, MatrixFormat matrixFormat)
|
|
: ShortestPathsGenerator<T>(transitionMatrix, vectorToMap(targetProbVector), initialStates, matrixFormat) {}
|
|
|
|
// extracts the relevant info from the model and delegates to ctor above
|
|
template <typename T>
|
|
ShortestPathsGenerator<T>::ShortestPathsGenerator(Model const& model, BitVector const& targetBV)
|
|
: ShortestPathsGenerator<T>(model.getTransitionMatrix(), allProbOneMap(targetBV), model.getInitialStates(), MatrixFormat::straight) {}
|
|
|
|
// several alternative ways to specify the targets are provided,
|
|
// each converts the targets and delegates to the ctor above
|
|
// I admit it's kind of ugly, but actually pretty convenient (and I've wanted to try C++11 delegation)
|
|
template <typename T>
|
|
ShortestPathsGenerator<T>::ShortestPathsGenerator(Model const& model, state_t singleTarget)
|
|
: ShortestPathsGenerator<T>(model, std::vector<state_t>{singleTarget}) {}
|
|
|
|
template <typename T>
|
|
ShortestPathsGenerator<T>::ShortestPathsGenerator(Model const& model, std::vector<state_t> const& targetList)
|
|
: ShortestPathsGenerator<T>(model, BitVector(model.getNumberOfStates(), targetList)) {}
|
|
|
|
template <typename T>
|
|
ShortestPathsGenerator<T>::ShortestPathsGenerator(Model const& model, std::string const& targetLabel)
|
|
: ShortestPathsGenerator<T>(model, model.getStates(targetLabel)) {}
|
|
|
|
template <typename T>
|
|
T ShortestPathsGenerator<T>::getDistance(unsigned long k) {
|
|
computeKSP(k);
|
|
return kShortestPaths[metaTarget][k - 1].distance;
|
|
}
|
|
|
|
template <typename T>
|
|
BitVector ShortestPathsGenerator<T>::getStates(unsigned long k) {
|
|
computeKSP(k);
|
|
BitVector stateSet(numStates - 1, false); // no meta-target
|
|
|
|
Path<T> currentPath = kShortestPaths[metaTarget][k - 1];
|
|
boost::optional<state_t> maybePredecessor = currentPath.predecessorNode;
|
|
// this omits the first node, which is actually convenient since that's the meta-target
|
|
|
|
while (maybePredecessor) {
|
|
state_t predecessor = maybePredecessor.get();
|
|
stateSet.set(predecessor, true);
|
|
|
|
currentPath = kShortestPaths[predecessor][currentPath.predecessorK - 1]; // god damn you, index
|
|
maybePredecessor = currentPath.predecessorNode;
|
|
}
|
|
|
|
return stateSet;
|
|
}
|
|
|
|
template <typename T>
|
|
std::vector<state_t> ShortestPathsGenerator<T>::getPathAsList(unsigned long k) {
|
|
computeKSP(k);
|
|
|
|
std::vector<state_t> backToFrontList;
|
|
|
|
Path<T> currentPath = kShortestPaths[metaTarget][k - 1];
|
|
boost::optional<state_t> maybePredecessor = currentPath.predecessorNode;
|
|
// this omits the first node, which is actually convenient since that's the meta-target
|
|
|
|
while (maybePredecessor) {
|
|
state_t predecessor = maybePredecessor.get();
|
|
backToFrontList.push_back(predecessor);
|
|
|
|
currentPath = kShortestPaths[predecessor][currentPath.predecessorK - 1];
|
|
maybePredecessor = currentPath.predecessorNode;
|
|
}
|
|
|
|
return backToFrontList;
|
|
}
|
|
|
|
template <typename T>
|
|
void ShortestPathsGenerator<T>::computePredecessors() {
|
|
assert(numStates - 1 == transitionMatrix.getRowCount());
|
|
|
|
// one more for meta-target
|
|
graphPredecessors.resize(numStates);
|
|
|
|
for (state_t i = 0; i < numStates - 1; i++) {
|
|
for (auto const& transition : transitionMatrix.getRowGroup(i)) {
|
|
// to avoid non-minimal paths, the meta-target-predecessors are
|
|
// *not* predecessors of any state but the meta-target
|
|
if (!isMetaTargetPredecessor(i)) {
|
|
graphPredecessors[transition.getColumn()].push_back(i);
|
|
}
|
|
}
|
|
}
|
|
|
|
// meta-target has exactly the meta-target-predecessors as predecessors
|
|
// (duh. note that the meta-target-predecessors used to be called target,
|
|
// but that's not necessarily true in the matrix/value invocation case)
|
|
for (auto targetProbPair : targetProbMap) {
|
|
graphPredecessors[metaTarget].push_back(targetProbPair.first);
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
void ShortestPathsGenerator<T>::performDijkstra() {
|
|
// the existing Dijkstra isn't working anyway AND
|
|
// doesn't fully meet our requirements, so let's roll our own
|
|
|
|
T inftyDistance = zero<T>();
|
|
T zeroDistance = one<T>();
|
|
shortestPathDistances.resize(numStates, inftyDistance);
|
|
shortestPathPredecessors.resize(numStates, boost::optional<state_t>());
|
|
|
|
// set serves as priority queue with unique membership
|
|
// default comparison on pair actually works fine if distance is the first entry
|
|
std::set<std::pair<T, state_t>, std::greater<std::pair<T, state_t>>> dijkstraQueue;
|
|
|
|
for (state_t initialState : initialStates) {
|
|
shortestPathDistances[initialState] = zeroDistance;
|
|
dijkstraQueue.emplace(zeroDistance, initialState);
|
|
}
|
|
|
|
while (!dijkstraQueue.empty()) {
|
|
state_t currentNode = (*dijkstraQueue.begin()).second;
|
|
dijkstraQueue.erase(dijkstraQueue.begin());
|
|
|
|
if (!isMetaTargetPredecessor(currentNode)) {
|
|
// non-target node, treated normally
|
|
for (auto const& transition : transitionMatrix.getRowGroup(currentNode)) {
|
|
state_t otherNode = transition.getColumn();
|
|
|
|
// note that distances are probabilities, thus they are multiplied and larger is better
|
|
T alternateDistance = shortestPathDistances[currentNode] * convertDistance(currentNode, otherNode, transition.getValue());
|
|
assert(zero<T>() <= alternateDistance <= one<T>()); // FIXME: there is a negative transition! SM gives us a placeholder!
|
|
if (alternateDistance > shortestPathDistances[otherNode]) {
|
|
shortestPathDistances[otherNode] = alternateDistance;
|
|
shortestPathPredecessors[otherNode] = boost::optional<state_t>(currentNode);
|
|
dijkstraQueue.emplace(alternateDistance, otherNode);
|
|
}
|
|
}
|
|
} else {
|
|
// node only has one "virtual edge" (with prob as per targetProbMap) to meta-target
|
|
// FIXME: double check
|
|
T alternateDistance = shortestPathDistances[currentNode] * targetProbMap[currentNode];
|
|
if (alternateDistance > shortestPathDistances[metaTarget]) {
|
|
shortestPathDistances[metaTarget] = alternateDistance;
|
|
shortestPathPredecessors[metaTarget] = boost::optional<state_t>(currentNode);
|
|
}
|
|
// no need to enqueue meta-target
|
|
}
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
void ShortestPathsGenerator<T>::computeSPSuccessors() {
|
|
shortestPathSuccessors.resize(numStates);
|
|
|
|
for (state_t i = 0; i < numStates; i++) {
|
|
if (shortestPathPredecessors[i]) {
|
|
state_t predecessor = shortestPathPredecessors[i].get();
|
|
shortestPathSuccessors[predecessor].push_back(i);
|
|
}
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
void ShortestPathsGenerator<T>::initializeShortestPaths() {
|
|
kShortestPaths.resize(numStates);
|
|
|
|
// BFS in Dijkstra-SP order
|
|
std::queue<state_t> bfsQueue;
|
|
for (state_t initialState : initialStates) {
|
|
bfsQueue.push(initialState);
|
|
}
|
|
|
|
while (!bfsQueue.empty()) {
|
|
state_t currentNode = bfsQueue.front();
|
|
bfsQueue.pop();
|
|
|
|
if (!kShortestPaths[currentNode].empty()) {
|
|
continue; // already visited
|
|
}
|
|
|
|
for (state_t successorNode : shortestPathSuccessors[currentNode]) {
|
|
bfsQueue.push(successorNode);
|
|
}
|
|
|
|
// note that `shortestPathPredecessor` may not be present
|
|
// if current node is an initial state
|
|
// in this case, the boost::optional copy of an uninitialized optional is hopefully also uninitialized
|
|
kShortestPaths[currentNode].push_back(Path<T> {
|
|
shortestPathPredecessors[currentNode],
|
|
1,
|
|
shortestPathDistances[currentNode]
|
|
});
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
T ShortestPathsGenerator<T>::getEdgeDistance(state_t tailNode, state_t headNode) const {
|
|
// just to be clear, head is where the arrow points (obviously)
|
|
if (headNode != metaTarget) {
|
|
// edge is "normal", not to meta-target
|
|
|
|
for (auto const& transition : transitionMatrix.getRowGroup(tailNode)) {
|
|
if (transition.getColumn() == headNode) {
|
|
return convertDistance(tailNode, headNode, transition.getValue());
|
|
}
|
|
}
|
|
|
|
// there is no such edge
|
|
// let's disallow that for now, because I'm not expecting it to happen
|
|
assert(false);
|
|
return zero<T>();
|
|
} else {
|
|
// edge must be "virtual edge" to meta-target
|
|
assert(isMetaTargetPredecessor(tailNode));
|
|
return targetProbMap.at(tailNode); // FIXME double check
|
|
}
|
|
}
|
|
|
|
|
|
template <typename T>
|
|
void ShortestPathsGenerator<T>::computeNextPath(state_t node, unsigned long k) {
|
|
assert(k >= 2); // Dijkstra is used for k=1
|
|
assert(kShortestPaths[node].size() == k - 1); // if not, the previous SP must not exist
|
|
|
|
// TODO: I could extract the candidate generation to make this function more succinct
|
|
if (k == 2) {
|
|
// Step B.1 in J&M paper
|
|
|
|
Path<T> shortestPathToNode = kShortestPaths[node][1 - 1]; // never forget index shift :-|
|
|
|
|
for (state_t predecessor : graphPredecessors[node]) {
|
|
// add shortest paths to predecessors plus edge to current node
|
|
Path<T> pathToPredecessorPlusEdge = {
|
|
boost::optional<state_t>(predecessor),
|
|
1,
|
|
shortestPathDistances[predecessor] * getEdgeDistance(predecessor, node)
|
|
};
|
|
candidatePaths[node].insert(pathToPredecessorPlusEdge);
|
|
|
|
// ... but not the actual shortest path
|
|
auto it = std::find(candidatePaths[node].begin(), candidatePaths[node].end(), shortestPathToNode);
|
|
if (it != candidatePaths[node].end()) {
|
|
candidatePaths[node].erase(it);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (not (k == 2 && isInitialState(node))) {
|
|
// Steps B.2-5 in J&M paper
|
|
|
|
// the (k-1)th shortest path (i.e., one better than the one we want to compute)
|
|
Path<T> previousShortestPath = kShortestPaths[node][k - 1 - 1]; // oh god, I forgot index shift AGAIN
|
|
|
|
// the predecessor node on that path
|
|
state_t predecessor = previousShortestPath.predecessorNode.get();
|
|
// the path to that predecessor was the `tailK`-shortest
|
|
unsigned long tailK = previousShortestPath.predecessorK;
|
|
|
|
// i.e. source ~~tailK-shortest path~~> predecessor --> node
|
|
|
|
// compute one-worse-shortest path to the predecessor (if it hasn't yet been computed)
|
|
if (kShortestPaths[predecessor].size() < tailK + 1) {
|
|
// TODO: investigate recursion depth and possible iterative alternative
|
|
computeNextPath(predecessor, tailK + 1);
|
|
}
|
|
|
|
if (kShortestPaths[predecessor].size() >= tailK + 1) {
|
|
// take that path, add an edge to the current node; that's a candidate
|
|
Path<T> pathToPredecessorPlusEdge = {
|
|
boost::optional<state_t>(predecessor),
|
|
tailK + 1,
|
|
kShortestPaths[predecessor][tailK + 1 - 1].distance * getEdgeDistance(predecessor, node)
|
|
};
|
|
candidatePaths[node].insert(pathToPredecessorPlusEdge);
|
|
}
|
|
// else there was no path; TODO: does this need handling? -- yes, but not here (because the step B.1 may have added candidates)
|
|
}
|
|
|
|
// Step B.6 in J&M paper
|
|
if (!candidatePaths[node].empty()) {
|
|
Path<T> minDistanceCandidate = *(candidatePaths[node].begin());
|
|
for (auto path : candidatePaths[node]) {
|
|
if (path.distance > minDistanceCandidate.distance) {
|
|
minDistanceCandidate = path;
|
|
}
|
|
}
|
|
|
|
candidatePaths[node].erase(std::find(candidatePaths[node].begin(), candidatePaths[node].end(), minDistanceCandidate));
|
|
kShortestPaths[node].push_back(minDistanceCandidate);
|
|
} else {
|
|
// TODO: kSP does not exist. this is handled later, but it would be nice to catch it as early as possble, wouldn't it?
|
|
STORM_LOG_TRACE("KSP: no candidates, this will trigger nonexisting ksp after exiting these recursions. TODO: handle here");
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
void ShortestPathsGenerator<T>::computeKSP(unsigned long k) {
|
|
unsigned long alreadyComputedK = kShortestPaths[metaTarget].size();
|
|
|
|
for (unsigned long nextK = alreadyComputedK + 1; nextK <= k; nextK++) {
|
|
computeNextPath(metaTarget, nextK);
|
|
if (kShortestPaths[metaTarget].size() < nextK) {
|
|
unsigned long lastExistingK = nextK - 1;
|
|
STORM_LOG_DEBUG("KSP throws (as expected) due to nonexistence -- maybe this is unhandled and causes the Python interface to segfault?");
|
|
STORM_LOG_DEBUG("last existing k-SP has k=" + std::to_string(lastExistingK));
|
|
STORM_LOG_DEBUG("maybe this is unhandled and causes the Python interface to segfault?");
|
|
throw std::invalid_argument("k-SP does not exist for k=" + std::to_string(k));
|
|
}
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
void ShortestPathsGenerator<T>::printKShortestPath(state_t targetNode, unsigned long k, bool head) const {
|
|
// note the index shift! risk of off-by-one
|
|
Path<T> p = kShortestPaths[targetNode][k - 1];
|
|
|
|
if (head) {
|
|
std::cout << "Path (reversed";
|
|
if (targetNode == metaTarget) {
|
|
std::cout << ", w/ meta-target";
|
|
}
|
|
std::cout <<"), dist (prob)=" << p.distance << ": [";
|
|
}
|
|
|
|
std::cout << " " << targetNode;
|
|
|
|
if (p.predecessorNode) {
|
|
printKShortestPath(p.predecessorNode.get(), p.predecessorK, false);
|
|
} else {
|
|
std::cout << " ]" << std::endl;
|
|
}
|
|
}
|
|
|
|
|
|
template class ShortestPathsGenerator<double>;
|
|
}
|
|
}
|
|
}
|