You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

641 lines
27 KiB

#pragma once
#include <vector>
#include <unordered_map>
#include <utility>
#include "storm-dft/storage/dft/DFTElementType.h"
#include "storm-dft/storage/dft/DFTElements.h"
#include "storm-dft/storage/dft/DFT.h"
namespace storm {
namespace storage {
struct GateGroupToHash {
static constexpr uint_fast64_t fivebitmask = (1 << 6) - 1;
static constexpr uint_fast64_t eightbitmask = (1 << 8) - 1;
/**
* Hash function, which ensures that the colours are sorted according to their rank.
*/
uint_fast64_t operator()(DFTElementType type, size_t nrChildren, size_t nrParents, size_t nrPDEPs, size_t rank) const {
// Sets first bit to 1
uint_fast64_t groupHash = static_cast<uint_fast64_t>(1) << 63;
//Assumes 5 bits for the rank,
groupHash |= (static_cast<uint_fast64_t>(rank) & fivebitmask) << (62 - 5);
// 8 bits for the nrChildren,
groupHash |= (static_cast<uint_fast64_t>(nrChildren) & eightbitmask) << (62 - 5 - 8);
// 5 bits for nrParents,
groupHash |= (static_cast<uint_fast64_t>(nrParents) & fivebitmask) << (62 - 5 - 8 - 5);
// 5 bits for nrPDEPs,
groupHash |= (static_cast<uint_fast64_t>(nrPDEPs) & fivebitmask) << (62 - 5 - 8 - 5 - 5);
// 5 bits for the type
groupHash |= (static_cast<uint_fast64_t>(type) & fivebitmask) << (62 - 5 - 8 - 5 - 5 - 5);
return groupHash;
}
};
struct RestrictionGroupToHash {
static constexpr uint_fast64_t fivebitmask = (1 << 6) - 1;
static constexpr uint_fast64_t eightbitmask = (1 << 8) - 1;
uint_fast64_t operator()(DFTElementType type, size_t nrChildren, size_t rank) const {
uint_fast64_t groupHash = static_cast<uint_fast64_t>(0);
groupHash |= (static_cast<uint_fast64_t>(rank) & fivebitmask) << (62 - 5);
groupHash |= (static_cast<uint_fast64_t>(nrChildren) & eightbitmask) << (62 - 5 - 8);
groupHash |= (static_cast<uint_fast64_t>(type) & fivebitmask) << (62 - 5 - 8 - 5);
return groupHash;
}
};
template<typename ValueType>
struct BEColourClass {
BEColourClass() = default;
BEColourClass(ValueType a, ValueType p, size_t h) : aRate(a), pRate(p), hash(h) {}
ValueType aRate;
ValueType pRate;
size_t hash;
};
template<typename ValueType>
bool operator==(BEColourClass<ValueType> const& lhs, BEColourClass<ValueType> const& rhs) {
return lhs.hash == rhs.hash && lhs.aRate == rhs.aRate && lhs.pRate == rhs.pRate;
}
/**
*
*/
template<typename ValueType>
struct BijectionCandidates {
std::unordered_map<size_t, std::vector<size_t>> gateCandidates;
std::unordered_map<BEColourClass<ValueType>, std::vector<size_t>> beCandidates;
std::unordered_map<std::pair<ValueType, ValueType>, std::vector<size_t>> pdepCandidates;
std::unordered_map<size_t, std::vector<size_t>> restrictionCandidates;
size_t nrGroups() const {
return gateCandidates.size() + beCandidates.size() + pdepCandidates.size() + restrictionCandidates.size();
}
size_t size() const {
return nrGates() + nrBEs() + nrDeps() + nrRestrictions();
}
size_t nrGates() const {
size_t res = 0;
for(auto const& x : gateCandidates) {
res += x.second.size();
}
return res;
}
size_t nrBEs() const {
size_t res = 0;
for(auto const& x : beCandidates) {
res += x.second.size();
}
return res;
}
size_t nrDeps() const {
size_t res = 0;
for(auto const& x : pdepCandidates) {
res += x.second.size();
}
return res;
}
size_t nrRestrictions() const {
size_t res = 0;
for(auto const& x : restrictionCandidates) {
res += x.second.size();
}
return res;
}
bool hasGate(size_t index) const {
for(auto const& x : gateCandidates) {
for( auto const& ind : x.second) {
if(index == ind) return true;
}
}
return false;
}
bool hasBE(size_t index) const {
for(auto const& x : beCandidates) {
for(auto const& ind : x.second) {
if(index == ind) return true;
}
}
return false;
}
bool hasDep(size_t index) const {
for(auto const& x : pdepCandidates) {
for(auto const& ind : x.second) {
if(index == ind) return true;
}
}
return false;
}
bool hasRestriction(size_t index) const {
for(auto const& x : restrictionCandidates) {
for(auto const& ind : x.second) {
if(index == ind) return true;
}
}
return false;
}
bool has(size_t index) const {
return hasGate(index) || hasBE(index) || hasDep(index) || hasRestriction(index);
}
size_t trivialGateGroups() const {
size_t res = 0;
for(auto const& x : gateCandidates) {
if(x.second.size() == 1) ++res;
}
return res;
}
size_t trivialBEGroups() const {
size_t res = 0;
for(auto const& x : beCandidates) {
if(x.second.size() == 1) ++res;
}
return res;
}
};
template<typename ValueType>
class DFTColouring {
DFT<ValueType> const& dft;
std::unordered_map<size_t, size_t> gateColour;
std::unordered_map<size_t, BEColourClass<ValueType>> beColour;
std::unordered_map<size_t, std::pair<ValueType, ValueType>> depColour;
std::unordered_map<size_t, size_t> restrictionColour;
GateGroupToHash gateColourizer;
RestrictionGroupToHash restrColourizer;
public:
DFTColouring(DFT<ValueType> const& ft) : dft(ft) {
for(size_t id = 0; id < dft.nrElements(); ++id ) {
if(dft.isBasicElement(id)) {
colourize(dft.getBasicElement(id));
} else if(dft.isGate(id)) {
colourize(dft.getGate(id));
} else if(dft.isDependency(id)) {
colourize(dft.getDependency(id));
} else {
STORM_LOG_ASSERT(dft.isRestriction(id), "Element is no restriction.");
colourize(dft.getRestriction(id));
}
}
}
bool hasSameColour(size_t index1, size_t index2) const {
return beColour.at(index1) == beColour.at(index2);
}
BijectionCandidates<ValueType> colourSubdft(std::vector<size_t> const& subDftIndices) const {
BijectionCandidates<ValueType> res;
for (size_t index : subDftIndices) {
if(dft.isBasicElement(index)) {
auto it = res.beCandidates.find(beColour.at(index));
if(it != res.beCandidates.end()) {
it->second.push_back(index);
} else {
res.beCandidates[beColour.at(index)] = std::vector<size_t>({index});
}
} else if(dft.isGate(index)) {
auto it = res.gateCandidates.find(gateColour.at(index));
if(it != res.gateCandidates.end()) {
it->second.push_back(index);
} else {
res.gateCandidates[gateColour.at(index)] = std::vector<size_t>({index});
}
} else if(dft.isDependency(index)) {
auto it = res.pdepCandidates.find(depColour.at(index));
if(it != res.pdepCandidates.end()) {
it->second.push_back(index);
} else {
res.pdepCandidates[depColour.at(index)] = std::vector<size_t>({index});
}
} else {
STORM_LOG_ASSERT(dft.isRestriction(index), "Element is no restriction.");
auto it = res.restrictionCandidates.find(restrictionColour.at(index));
if(it != res.restrictionCandidates.end()) {
it->second.push_back(index);
} else {
res.restrictionCandidates[restrictionColour.at(index)] = std::vector<size_t>({index});
}
}
}
return res;
}
protected:
void colourize(std::shared_ptr<const DFTBE<ValueType>> const& be) {
beColour[be->id()] = BEColourClass<ValueType>(be->activeFailureRate(), be->passiveFailureRate(), be->nrParents());
}
void colourize(std::shared_ptr<const DFTGate<ValueType>> const& gate) {
STORM_LOG_TRACE("Colour " << gate->id() << ": " << gate->type() << " " << gate->nrChildren() << " " << gate->rank() << ".");
gateColour[gate->id()] = gateColourizer(gate->type(), gate->nrChildren(), gate->nrParents(), 0, gate->rank());
}
void colourize(std::shared_ptr<const DFTDependency<ValueType>> const& dep) {
depColour[dep->id()] = std::pair<ValueType, ValueType>(dep->probability(), dep->dependentEvent()->activeFailureRate());
}
void colourize(std::shared_ptr<const DFTRestriction<ValueType>> const& restr) {
restrictionColour[restr->id()] = restrColourizer(restr->type(), restr->nrChildren(), restr->rank());
}
};
/**
* Saves isomorphism between subtrees
*/
template<typename ValueType>
class DFTIsomorphismCheck {
/// Coloured nodes as provided by the input: left hand side
BijectionCandidates<ValueType> const& bleft;
/// Coloured nodes as provided by the input: right hand side.
BijectionCandidates<ValueType> const& bright;
/// Whether the colourings are compatible
bool candidatesCompatible = true;
/// Current bijection
std::map<size_t, size_t> bijection;
/// Current permutations of right hand side groups which lead to the homomorphism.
/// Contains only colours with more than one member.
BijectionCandidates<ValueType> currentPermutations;
DFT<ValueType> const& dft;
public:
DFTIsomorphismCheck(BijectionCandidates<ValueType> const& left, BijectionCandidates<ValueType> const& right, DFT<ValueType> const& dft) : bleft(left), bright(right), dft(dft)
{
checkCompatibility();
}
/**
* Checks whether the candidates are compatible, that is, checks the colours and the number of members for each colour.
* @return True iff compatible, ie if the preliminary check allows for a isomorphism.
*/
bool compatible() {
return candidatesCompatible;
}
/**
* Returns the isomorphism
* Can only be called after the findIsomorphism procedure returned that an isomorphism has found.
* @see findIsomorphism
*/
std::map<size_t, size_t> const& getIsomorphism() const {
return bijection;
}
/**
* Check whether another isomorphism exists.
*
* @return true iff another isomorphism exists.
*/
bool findNextIsomorphism() {
if(!candidatesCompatible){
return false;
}
if (bijection.empty()) {
constructInitialBijection();
} else {
if (!findNextBijection()) {
return false;
}
}
while(!check()) {
// continue our search
if(!findNextBijection()) {
// No further bijections to check, no is
return false;
}
}
return true;
}
protected:
/**
* Construct the initial bijection.
*/
void constructInitialBijection() {
STORM_LOG_ASSERT(candidatesCompatible, "Candidates are not compatible.");
// We first construct the currentPermutations, which helps to determine the current state of the check.
initializePermutationsAndTreatTrivialGroups(bleft.beCandidates, bright.beCandidates, currentPermutations.beCandidates);
initializePermutationsAndTreatTrivialGroups(bleft.gateCandidates, bright.gateCandidates, currentPermutations.gateCandidates);
initializePermutationsAndTreatTrivialGroups(bleft.pdepCandidates, bright.pdepCandidates, currentPermutations.pdepCandidates);
initializePermutationsAndTreatTrivialGroups(bleft.restrictionCandidates, bright.restrictionCandidates, currentPermutations.restrictionCandidates);
STORM_LOG_TRACE(bijection.size() << " vs. " << bleft.size() << " vs. " << bright.size());
STORM_LOG_ASSERT(bijection.size() == bleft.size(), "No. of bijection elements do not match.");
}
/**
* Construct the next bijection
* @return true if a next bijection exists.
*/
bool findNextBijection() {
STORM_LOG_ASSERT(candidatesCompatible, "Candidates are not compatible.");
bool foundNext = false;
if(!currentPermutations.beCandidates.empty()) {
auto it = currentPermutations.beCandidates.begin();
while(!foundNext && it != currentPermutations.beCandidates.end()) {
foundNext = std::next_permutation(it->second.begin(), it->second.end());
++it;
}
}
if(!foundNext && !currentPermutations.gateCandidates.empty()) {
auto it = currentPermutations.gateCandidates.begin();
while(!foundNext && it != currentPermutations.gateCandidates.end()) {
foundNext = std::next_permutation(it->second.begin(), it->second.end());
++it;
}
}
if(!foundNext && !currentPermutations.pdepCandidates.empty()) {
auto it = currentPermutations.pdepCandidates.begin();
while(!foundNext && it != currentPermutations.pdepCandidates.end()) {
foundNext = std::next_permutation(it->second.begin(), it->second.end());
++it;
}
}
if(!foundNext && !currentPermutations.restrictionCandidates.empty()) {
auto it = currentPermutations.restrictionCandidates.begin();
while(!foundNext && it != currentPermutations.restrictionCandidates.end()) {
foundNext = std::next_permutation(it->second.begin(), it->second.end());
++it;
}
}
if(foundNext) {
for(auto const& colour : bleft.beCandidates) {
if (colour.second.size() > 1) {
STORM_LOG_ASSERT(currentPermutations.beCandidates.find(colour.first) != currentPermutations.beCandidates.end(), "Colour not found.");
zipVectorsIntoMap(colour.second, currentPermutations.beCandidates.find(colour.first)->second, bijection);
}
}
for(auto const& colour : bleft.gateCandidates) {
if (colour.second.size() > 1) {
STORM_LOG_ASSERT(currentPermutations.gateCandidates.find(colour.first) != currentPermutations.gateCandidates.end(), "Colour not found.");
zipVectorsIntoMap(colour.second, currentPermutations.gateCandidates.find(colour.first)->second, bijection);
}
}
for(auto const& colour : bleft.pdepCandidates) {
if (colour.second.size() > 1) {
STORM_LOG_ASSERT(currentPermutations.pdepCandidates.find(colour.first) != currentPermutations.pdepCandidates.end(), "Colour not found.");
zipVectorsIntoMap(colour.second, currentPermutations.pdepCandidates.find(colour.first)->second, bijection);
}
}
for(auto const& colour : bleft.restrictionCandidates) {
if (colour.second.size() > 1) {
STORM_LOG_ASSERT(currentPermutations.restrictionCandidates.find(colour.first) != currentPermutations.restrictionCandidates.end(), "Colour not found.");
zipVectorsIntoMap(colour.second, currentPermutations.restrictionCandidates.find(colour.first)->second, bijection);
}
}
}
return foundNext;
}
/**
*
*/
bool check() const {
STORM_LOG_ASSERT(bijection.size() == bleft.size(), "No. of bijection elements do not match.");
// We can skip BEs, as they are identified by they're homomorphic if they are in the same class
for(auto const& indexpair : bijection) {
// Check type first. Colouring takes care of a lot, but not necesarily everything (e.g. voting thresholds)
equalType(*dft.getElement(indexpair.first), *dft.getElement(indexpair.second));
if(dft.isGate(indexpair.first)) {
STORM_LOG_ASSERT(dft.isGate(indexpair.second), "Element is no gate.");
auto const& lGate = dft.getGate(indexpair.first);
auto const& rGate = dft.getGate(indexpair.second);
if(lGate->isDynamicGate()) {
std::vector<size_t> childrenLeftMapped;
for(auto const& child : lGate->children() ) {
if (bleft.has(child->id())) {
childrenLeftMapped.push_back(bijection.at(child->id()));
} else {
// Indicate shared child which is not part of the symmetry
// For dynamic gates the order is important
childrenLeftMapped.push_back(-1);
}
}
std::vector<size_t> childrenRight;
for(auto const& child : rGate->children() ) {
if (bright.has(child->id())) {
childrenRight.push_back(child->id());
} else {
// Indicate shared child which is not part of the symmetry
// For dynamic gates the order is important
childrenRight.push_back(-1);
}
}
if(childrenLeftMapped != childrenRight) {
return false;
}
} else {
std::set<size_t> childrenLeftMapped;
for(auto const& child : lGate->children() ) {
if (bleft.has(child->id())) {
childrenLeftMapped.insert(bijection.at(child->id()));
}
}
std::set<size_t> childrenRight;
for(auto const& child : rGate->children() ) {
if (bright.has(child->id())) {
childrenRight.insert(child->id());
}
}
if(childrenLeftMapped != childrenRight) {
return false;
}
}
} else if(dft.isDependency(indexpair.first)) {
STORM_LOG_ASSERT(dft.isDependency(indexpair.second), "Element is no dependency.");
auto const& lDep = dft.getDependency(indexpair.first);
auto const& rDep = dft.getDependency(indexpair.second);
if(bijection.at(lDep->triggerEvent()->id()) != rDep->triggerEvent()->id()) {
return false;
}
if(bijection.at(lDep->dependentEvent()->id()) != rDep->dependentEvent()->id()) {
return false;
}
} else if(dft.isRestriction(indexpair.first)) {
STORM_LOG_ASSERT(dft.isRestriction(indexpair.second), "Element is no restriction.");
auto const& lRestr = dft.getRestriction(indexpair.first);
std::vector<size_t> childrenLeftMapped;
for(auto const& child : lRestr->children() ) {
if (bleft.has(child->id())) {
childrenLeftMapped.push_back(bijection.at(child->id()));
} else {
// Indicate shared child which is not part of the symmetry
// For dynamic gates the order is important
childrenLeftMapped.push_back(-1);
}
}
auto const& rRestr = dft.getRestriction(indexpair.second);
std::vector<size_t> childrenRight;
for(auto const& child : rRestr->children() ) {
if (bright.has(child->id())) {
childrenRight.push_back(child->id());
} else {
// Indicate shared child which is not part of the symmetry
// For dynamic gates the order is important
childrenRight.push_back(-1);
}
}
if(childrenLeftMapped != childrenRight) {
return false;
}
}
else {
STORM_LOG_ASSERT(dft.isBasicElement(indexpair.first), "Element is no BE.");
STORM_LOG_ASSERT(dft.isBasicElement(indexpair.second), "Element is no BE.");
// No operations required.
}
}
return true;
}
private:
/**
* Returns true if the colours are compatible.
*/
bool checkCompatibility() {
if(bleft.gateCandidates.size() != bright.gateCandidates.size()) {
candidatesCompatible = false;
return false;
}
if(bleft.beCandidates.size() != bright.beCandidates.size()) {
candidatesCompatible = false;
return false;
}
if(bleft.beCandidates.size() != bright.beCandidates.size()) {
candidatesCompatible = false;
return false;
}
if(bleft.restrictionCandidates.size() != bright.restrictionCandidates.size()) {
candidatesCompatible = false;
return false;
}
for (auto const &gc : bleft.gateCandidates) {
if (bright.gateCandidates.count(gc.first) == 0) {
candidatesCompatible = false;
return false;
}
}
for(auto const& bc : bleft.beCandidates) {
if(bright.beCandidates.count(bc.first) == 0) {
candidatesCompatible = false;
return false;
}
}
for(auto const& dc : bleft.pdepCandidates) {
if(bright.pdepCandidates.count(dc.first) == 0) {
candidatesCompatible = false;
return false;
}
}
for(auto const& dc : bleft.restrictionCandidates) {
if(bright.restrictionCandidates.count(dc.first) == 0) {
candidatesCompatible = false;
return false;
}
}
return true;
}
/**
*
*/
template<typename ColourType>
void initializePermutationsAndTreatTrivialGroups(std::unordered_map<ColourType, std::vector<size_t>> const& left,
std::unordered_map<ColourType, std::vector<size_t>> const& right,
std::unordered_map<ColourType, std::vector<size_t>>& permutations) {
for(auto const& colour : right) {
if(colour.second.size()>1) {
auto it = permutations.insert(colour);
STORM_LOG_ASSERT(it.second, "Element already contained.");
std::sort(it.first->second.begin(), it.first->second.end());
zipVectorsIntoMap(left.at(colour.first), it.first->second, bijection);
} else {
STORM_LOG_ASSERT(colour.second.size() == 1, "No elements for colour.");
STORM_LOG_ASSERT(bijection.count(left.at(colour.first).front()) == 0, "Element already contained.");
bijection[left.at(colour.first).front()] = colour.second.front();
}
}
}
/**
* Local helper function for the creation of bijections, should be hidden from api.
*/
void zipVectorsIntoMap(std::vector<size_t> const& a, std::vector<size_t> const& b, std::map<size_t, size_t>& map) const {
// Assert should pass due to compatibility check
STORM_LOG_ASSERT(a.size() == b.size(), "Sizes do not match.");
auto it = b.cbegin();
for(size_t lIndex : a) {
map[lIndex] = *it;
++it;
}
}
};
} // namespace storm::dft
} // namespace storm
namespace std {
template<typename ValueType>
struct hash<storm::storage::BEColourClass<ValueType>> {
size_t operator()(storm::storage::BEColourClass<ValueType> const& bcc) const {
std::hash<ValueType> hasher;
return (hasher(bcc.aRate) ^ hasher(bcc.pRate) << 8) | bcc.hash;
}
};
template<typename ValueType>
struct hash<std::pair<ValueType, ValueType>> {
size_t operator()(std::pair<ValueType, ValueType> const& p) const {
std::hash<ValueType> hasher;
return hasher(p.first) ^ hasher(p.second);
}
};
}