You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							203 lines
						
					
					
						
							5.2 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							203 lines
						
					
					
						
							5.2 KiB
						
					
					
				| *> \brief \b CLARFG | |
| * | |
| *  =========== DOCUMENTATION =========== | |
| * | |
| * Online html documentation available at  | |
| *            http://www.netlib.org/lapack/explore-html/  | |
| * | |
| *> \htmlonly | |
| *> Download CLARFG + dependencies  | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/clarfg.f">  | |
| *> [TGZ]</a>  | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/clarfg.f">  | |
| *> [ZIP]</a>  | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/clarfg.f">  | |
| *> [TXT]</a> | |
| *> \endhtmlonly  | |
| * | |
| *  Definition: | |
| *  =========== | |
| * | |
| *       SUBROUTINE CLARFG( N, ALPHA, X, INCX, TAU ) | |
| *  | |
| *       .. Scalar Arguments .. | |
| *       INTEGER            INCX, N | |
| *       COMPLEX            ALPHA, TAU | |
| *       .. | |
| *       .. Array Arguments .. | |
| *       COMPLEX            X( * ) | |
| *       .. | |
| *   | |
| * | |
| *> \par Purpose: | |
| *  ============= | |
| *> | |
| *> \verbatim | |
| *> | |
| *> CLARFG generates a complex elementary reflector H of order n, such | |
| *> that | |
| *> | |
| *>       H**H * ( alpha ) = ( beta ),   H**H * H = I. | |
| *>              (   x   )   (   0  ) | |
| *> | |
| *> where alpha and beta are scalars, with beta real, and x is an | |
| *> (n-1)-element complex vector. H is represented in the form | |
| *> | |
| *>       H = I - tau * ( 1 ) * ( 1 v**H ) , | |
| *>                     ( v ) | |
| *> | |
| *> where tau is a complex scalar and v is a complex (n-1)-element | |
| *> vector. Note that H is not hermitian. | |
| *> | |
| *> If the elements of x are all zero and alpha is real, then tau = 0 | |
| *> and H is taken to be the unit matrix. | |
| *> | |
| *> Otherwise  1 <= real(tau) <= 2  and  abs(tau-1) <= 1 . | |
| *> \endverbatim | |
| * | |
| *  Arguments: | |
| *  ========== | |
| * | |
| *> \param[in] N | |
| *> \verbatim | |
| *>          N is INTEGER | |
| *>          The order of the elementary reflector. | |
| *> \endverbatim | |
| *> | |
| *> \param[in,out] ALPHA | |
| *> \verbatim | |
| *>          ALPHA is COMPLEX | |
| *>          On entry, the value alpha. | |
| *>          On exit, it is overwritten with the value beta. | |
| *> \endverbatim | |
| *> | |
| *> \param[in,out] X | |
| *> \verbatim | |
| *>          X is COMPLEX array, dimension | |
| *>                         (1+(N-2)*abs(INCX)) | |
| *>          On entry, the vector x. | |
| *>          On exit, it is overwritten with the vector v. | |
| *> \endverbatim | |
| *> | |
| *> \param[in] INCX | |
| *> \verbatim | |
| *>          INCX is INTEGER | |
| *>          The increment between elements of X. INCX > 0. | |
| *> \endverbatim | |
| *> | |
| *> \param[out] TAU | |
| *> \verbatim | |
| *>          TAU is COMPLEX | |
| *>          The value tau. | |
| *> \endverbatim | |
| * | |
| *  Authors: | |
| *  ======== | |
| * | |
| *> \author Univ. of Tennessee  | |
| *> \author Univ. of California Berkeley  | |
| *> \author Univ. of Colorado Denver  | |
| *> \author NAG Ltd.  | |
| * | |
| *> \date November 2011 | |
| * | |
| *> \ingroup complexOTHERauxiliary | |
| * | |
| *  ===================================================================== | |
|       SUBROUTINE CLARFG( N, ALPHA, X, INCX, TAU ) | |
| * | |
| *  -- LAPACK auxiliary routine (version 3.4.0) -- | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    -- | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- | |
| *     November 2011 | |
| * | |
| *     .. Scalar Arguments .. | |
|       INTEGER            INCX, N | |
|       COMPLEX            ALPHA, TAU | |
| *     .. | |
| *     .. Array Arguments .. | |
|       COMPLEX            X( * ) | |
| *     .. | |
| * | |
| *  ===================================================================== | |
| * | |
| *     .. Parameters .. | |
|       REAL               ONE, ZERO | |
|       PARAMETER          ( ONE = 1.0E+0, ZERO = 0.0E+0 ) | |
| *     .. | |
| *     .. Local Scalars .. | |
|       INTEGER            J, KNT | |
|       REAL               ALPHI, ALPHR, BETA, RSAFMN, SAFMIN, XNORM | |
| *     .. | |
| *     .. External Functions .. | |
|       REAL               SCNRM2, SLAMCH, SLAPY3 | |
|       COMPLEX            CLADIV | |
|       EXTERNAL           SCNRM2, SLAMCH, SLAPY3, CLADIV | |
| *     .. | |
| *     .. Intrinsic Functions .. | |
|       INTRINSIC          ABS, AIMAG, CMPLX, REAL, SIGN | |
| *     .. | |
| *     .. External Subroutines .. | |
|       EXTERNAL           CSCAL, CSSCAL | |
| *     .. | |
| *     .. Executable Statements .. | |
| * | |
|       IF( N.LE.0 ) THEN | |
|          TAU = ZERO | |
|          RETURN | |
|       END IF | |
| * | |
|       XNORM = SCNRM2( N-1, X, INCX ) | |
|       ALPHR = REAL( ALPHA ) | |
|       ALPHI = AIMAG( ALPHA ) | |
| * | |
|       IF( XNORM.EQ.ZERO .AND. ALPHI.EQ.ZERO ) THEN | |
| * | |
| *        H  =  I | |
| * | |
|          TAU = ZERO | |
|       ELSE | |
| * | |
| *        general case | |
| * | |
|          BETA = -SIGN( SLAPY3( ALPHR, ALPHI, XNORM ), ALPHR ) | |
|          SAFMIN = SLAMCH( 'S' ) / SLAMCH( 'E' ) | |
|          RSAFMN = ONE / SAFMIN | |
| * | |
|          KNT = 0 | |
|          IF( ABS( BETA ).LT.SAFMIN ) THEN | |
| * | |
| *           XNORM, BETA may be inaccurate; scale X and recompute them | |
| * | |
|    10       CONTINUE | |
|             KNT = KNT + 1 | |
|             CALL CSSCAL( N-1, RSAFMN, X, INCX ) | |
|             BETA = BETA*RSAFMN | |
|             ALPHI = ALPHI*RSAFMN | |
|             ALPHR = ALPHR*RSAFMN | |
|             IF( ABS( BETA ).LT.SAFMIN ) | |
|      $         GO TO 10 | |
| * | |
| *           New BETA is at most 1, at least SAFMIN | |
| * | |
|             XNORM = SCNRM2( N-1, X, INCX ) | |
|             ALPHA = CMPLX( ALPHR, ALPHI ) | |
|             BETA = -SIGN( SLAPY3( ALPHR, ALPHI, XNORM ), ALPHR ) | |
|          END IF | |
|          TAU = CMPLX( ( BETA-ALPHR ) / BETA, -ALPHI / BETA ) | |
|          ALPHA = CLADIV( CMPLX( ONE ), ALPHA-BETA ) | |
|          CALL CSCAL( N-1, ALPHA, X, INCX ) | |
| * | |
| *        If ALPHA is subnormal, it may lose relative accuracy | |
| * | |
|          DO 20 J = 1, KNT | |
|             BETA = BETA*SAFMIN | |
|  20      CONTINUE | |
|          ALPHA = BETA | |
|       END IF | |
| * | |
|       RETURN | |
| * | |
| *     End of CLARFG | |
| * | |
|       END
 |