You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							727 lines
						
					
					
						
							26 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							727 lines
						
					
					
						
							26 KiB
						
					
					
				| namespace Eigen { | |
| 
 | |
| /** \eigenManualPage QuickRefPage Quick reference guide | |
| 
 | |
| \eigenAutoToc | |
| 
 | |
| <hr> | |
| 
 | |
| <a href="#" class="top">top</a> | |
| \section QuickRef_Headers Modules and Header files | |
| 
 | |
| The Eigen library is divided in a Core module and several additional modules. Each module has a corresponding header file which has to be included in order to use the module. The \c %Dense and \c Eigen header files are provided to conveniently gain access to several modules at once. | |
| 
 | |
| <table class="manual"> | |
| <tr><th>Module</th><th>Header file</th><th>Contents</th></tr> | |
| <tr><td>\link Core_Module Core \endlink</td><td>\code#include <Eigen/Core>\endcode</td><td>Matrix and Array classes, basic linear algebra (including triangular and selfadjoint products), array manipulation</td></tr> | |
| <tr class="alt"><td>\link Geometry_Module Geometry \endlink</td><td>\code#include <Eigen/Geometry>\endcode</td><td>Transform, Translation, Scaling, Rotation2D and 3D rotations (Quaternion, AngleAxis)</td></tr> | |
| <tr><td>\link LU_Module LU \endlink</td><td>\code#include <Eigen/LU>\endcode</td><td>Inverse, determinant, LU decompositions with solver (FullPivLU, PartialPivLU)</td></tr> | |
| <tr><td>\link Cholesky_Module Cholesky \endlink</td><td>\code#include <Eigen/Cholesky>\endcode</td><td>LLT and LDLT Cholesky factorization with solver</td></tr> | |
| <tr class="alt"><td>\link Householder_Module Householder \endlink</td><td>\code#include <Eigen/Householder>\endcode</td><td>Householder transformations; this module is used by several linear algebra modules</td></tr> | |
| <tr><td>\link SVD_Module SVD \endlink</td><td>\code#include <Eigen/SVD>\endcode</td><td>SVD decomposition with least-squares solver (JacobiSVD)</td></tr> | |
| <tr class="alt"><td>\link QR_Module QR \endlink</td><td>\code#include <Eigen/QR>\endcode</td><td>QR decomposition with solver (HouseholderQR, ColPivHouseholderQR, FullPivHouseholderQR)</td></tr> | |
| <tr><td>\link Eigenvalues_Module Eigenvalues \endlink</td><td>\code#include <Eigen/Eigenvalues>\endcode</td><td>Eigenvalue, eigenvector decompositions (EigenSolver, SelfAdjointEigenSolver, ComplexEigenSolver)</td></tr> | |
| <tr class="alt"><td>\link Sparse_modules Sparse \endlink</td><td>\code#include <Eigen/Sparse>\endcode</td><td>%Sparse matrix storage and related basic linear algebra (SparseMatrix, DynamicSparseMatrix, SparseVector)</td></tr> | |
| <tr><td></td><td>\code#include <Eigen/Dense>\endcode</td><td>Includes Core, Geometry, LU, Cholesky, SVD, QR, and Eigenvalues header files</td></tr> | |
| <tr class="alt"><td></td><td>\code#include <Eigen/Eigen>\endcode</td><td>Includes %Dense and %Sparse header files (the whole Eigen library)</td></tr> | |
| </table> | |
| 
 | |
| <a href="#" class="top">top</a> | |
| \section QuickRef_Types Array, matrix and vector types | |
| 
 | |
| 
 | |
| \b Recall: Eigen provides two kinds of dense objects: mathematical matrices and vectors which are both represented by the template class Matrix, and general 1D and 2D arrays represented by the template class Array: | |
| \code | |
| typedef Matrix<Scalar, RowsAtCompileTime, ColsAtCompileTime, Options> MyMatrixType; | |
| typedef Array<Scalar, RowsAtCompileTime, ColsAtCompileTime, Options> MyArrayType; | |
| \endcode | |
| 
 | |
| \li \c Scalar is the scalar type of the coefficients (e.g., \c float, \c double, \c bool, \c int, etc.). | |
| \li \c RowsAtCompileTime and \c ColsAtCompileTime are the number of rows and columns of the matrix as known at compile-time or \c Dynamic. | |
| \li \c Options can be \c ColMajor or \c RowMajor, default is \c ColMajor. (see class Matrix for more options) | |
| 
 | |
| All combinations are allowed: you can have a matrix with a fixed number of rows and a dynamic number of columns, etc. The following are all valid: | |
| \code | |
| Matrix<double, 6, Dynamic>                  // Dynamic number of columns (heap allocation) | |
| Matrix<double, Dynamic, 2>                  // Dynamic number of rows (heap allocation) | |
| Matrix<double, Dynamic, Dynamic, RowMajor>  // Fully dynamic, row major (heap allocation) | |
| Matrix<double, 13, 3>                       // Fully fixed (usually allocated on stack) | |
| \endcode | |
| 
 | |
| In most cases, you can simply use one of the convenience typedefs for \ref matrixtypedefs "matrices" and \ref arraytypedefs "arrays". Some examples: | |
| <table class="example"> | |
| <tr><th>Matrices</th><th>Arrays</th></tr> | |
| <tr><td>\code | |
| Matrix<float,Dynamic,Dynamic>   <=>   MatrixXf | |
| Matrix<double,Dynamic,1>        <=>   VectorXd | |
| Matrix<int,1,Dynamic>           <=>   RowVectorXi | |
| Matrix<float,3,3>               <=>   Matrix3f | |
| Matrix<float,4,1>               <=>   Vector4f | |
| \endcode</td><td>\code | |
| Array<float,Dynamic,Dynamic>    <=>   ArrayXXf | |
| Array<double,Dynamic,1>         <=>   ArrayXd | |
| Array<int,1,Dynamic>            <=>   RowArrayXi | |
| Array<float,3,3>                <=>   Array33f | |
| Array<float,4,1>                <=>   Array4f | |
| \endcode</td></tr> | |
| </table> | |
| 
 | |
| Conversion between the matrix and array worlds: | |
| \code | |
| Array44f a1, a1; | |
| Matrix4f m1, m2; | |
| m1 = a1 * a2;                     // coeffwise product, implicit conversion from array to matrix. | |
| a1 = m1 * m2;                     // matrix product, implicit conversion from matrix to array. | |
| a2 = a1 + m1.array();             // mixing array and matrix is forbidden | |
| m2 = a1.matrix() + m1;            // and explicit conversion is required. | |
| ArrayWrapper<Matrix4f> m1a(m1);   // m1a is an alias for m1.array(), they share the same coefficients | |
| MatrixWrapper<Array44f> a1m(a1); | |
| \endcode | |
| 
 | |
| In the rest of this document we will use the following symbols to emphasize the features which are specifics to a given kind of object: | |
| \li <a name="matrixonly"></a>\matrixworld linear algebra matrix and vector only | |
| \li <a name="arrayonly"></a>\arrayworld array objects only | |
| 
 | |
| \subsection QuickRef_Basics Basic matrix manipulation | |
| 
 | |
| <table class="manual"> | |
| <tr><th></th><th>1D objects</th><th>2D objects</th><th>Notes</th></tr> | |
| <tr><td>Constructors</td> | |
| <td>\code | |
| Vector4d  v4; | |
| Vector2f  v1(x, y); | |
| Array3i   v2(x, y, z); | |
| Vector4d  v3(x, y, z, w); | |
| 
 | |
| VectorXf  v5; // empty object | |
| ArrayXf   v6(size); | |
| \endcode</td><td>\code | |
| Matrix4f  m1; | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| MatrixXf  m5; // empty object | |
| MatrixXf  m6(nb_rows, nb_columns); | |
| \endcode</td><td class="note"> | |
| By default, the coefficients \n are left uninitialized</td></tr> | |
| <tr class="alt"><td>Comma initializer</td> | |
| <td>\code | |
| Vector3f  v1;     v1 << x, y, z; | |
| ArrayXf   v2(4);  v2 << 1, 2, 3, 4; | |
| 
 | |
| \endcode</td><td>\code | |
| Matrix3f  m1;   m1 << 1, 2, 3, | |
|                       4, 5, 6, | |
|                       7, 8, 9; | |
| \endcode</td><td></td></tr> | |
| 
 | |
| <tr><td>Comma initializer (bis)</td> | |
| <td colspan="2"> | |
| \include Tutorial_commainit_02.cpp | |
| </td> | |
| <td> | |
| output: | |
| \verbinclude Tutorial_commainit_02.out | |
| </td> | |
| </tr> | |
| 
 | |
| <tr class="alt"><td>Runtime info</td> | |
| <td>\code | |
| vector.size(); | |
| 
 | |
| vector.innerStride(); | |
| vector.data(); | |
| \endcode</td><td>\code | |
| matrix.rows();          matrix.cols(); | |
| matrix.innerSize();     matrix.outerSize(); | |
| matrix.innerStride();   matrix.outerStride(); | |
| matrix.data(); | |
| \endcode</td><td class="note">Inner/Outer* are storage order dependent</td></tr> | |
| <tr><td>Compile-time info</td> | |
| <td colspan="2">\code | |
| ObjectType::Scalar              ObjectType::RowsAtCompileTime | |
| ObjectType::RealScalar          ObjectType::ColsAtCompileTime | |
| ObjectType::Index               ObjectType::SizeAtCompileTime | |
| \endcode</td><td></td></tr> | |
| <tr class="alt"><td>Resizing</td> | |
| <td>\code | |
| vector.resize(size); | |
| 
 | |
| 
 | |
| vector.resizeLike(other_vector); | |
| vector.conservativeResize(size); | |
| \endcode</td><td>\code | |
| matrix.resize(nb_rows, nb_cols); | |
| matrix.resize(Eigen::NoChange, nb_cols); | |
| matrix.resize(nb_rows, Eigen::NoChange); | |
| matrix.resizeLike(other_matrix); | |
| matrix.conservativeResize(nb_rows, nb_cols); | |
| \endcode</td><td class="note">no-op if the new sizes match,<br/>otherwise data are lost<br/><br/>resizing with data preservation</td></tr> | |
| 
 | |
| <tr><td>Coeff access with \n range checking</td> | |
| <td>\code | |
| vector(i)     vector.x() | |
| vector[i]     vector.y() | |
|               vector.z() | |
|               vector.w() | |
| \endcode</td><td>\code | |
| matrix(i,j) | |
| \endcode</td><td class="note">Range checking is disabled if \n NDEBUG or EIGEN_NO_DEBUG is defined</td></tr> | |
| 
 | |
| <tr class="alt"><td>Coeff access without \n range checking</td> | |
| <td>\code | |
| vector.coeff(i) | |
| vector.coeffRef(i) | |
| \endcode</td><td>\code | |
| matrix.coeff(i,j) | |
| matrix.coeffRef(i,j) | |
| \endcode</td><td></td></tr> | |
| 
 | |
| <tr><td>Assignment/copy</td> | |
| <td colspan="2">\code | |
| object = expression; | |
| object_of_float = expression_of_double.cast<float>(); | |
| \endcode</td><td class="note">the destination is automatically resized (if possible)</td></tr> | |
| 
 | |
| </table> | |
| 
 | |
| \subsection QuickRef_PredefMat Predefined Matrices | |
| 
 | |
| <table class="manual"> | |
| <tr> | |
|   <th>Fixed-size matrix or vector</th> | |
|   <th>Dynamic-size matrix</th> | |
|   <th>Dynamic-size vector</th> | |
| </tr> | |
| <tr style="border-bottom-style: none;"> | |
|   <td> | |
| \code | |
| typedef {Matrix3f|Array33f} FixedXD; | |
| FixedXD x; | |
| 
 | |
| x = FixedXD::Zero(); | |
| x = FixedXD::Ones(); | |
| x = FixedXD::Constant(value); | |
| x = FixedXD::Random(); | |
| x = FixedXD::LinSpaced(size, low, high); | |
| 
 | |
| x.setZero(); | |
| x.setOnes(); | |
| x.setConstant(value); | |
| x.setRandom(); | |
| x.setLinSpaced(size, low, high); | |
| \endcode | |
|   </td> | |
|   <td> | |
| \code | |
| typedef {MatrixXf|ArrayXXf} Dynamic2D; | |
| Dynamic2D x; | |
| 
 | |
| x = Dynamic2D::Zero(rows, cols); | |
| x = Dynamic2D::Ones(rows, cols); | |
| x = Dynamic2D::Constant(rows, cols, value); | |
| x = Dynamic2D::Random(rows, cols); | |
| N/A | |
| 
 | |
| x.setZero(rows, cols); | |
| x.setOnes(rows, cols); | |
| x.setConstant(rows, cols, value); | |
| x.setRandom(rows, cols); | |
| N/A | |
| \endcode | |
|   </td> | |
|   <td> | |
| \code | |
| typedef {VectorXf|ArrayXf} Dynamic1D; | |
| Dynamic1D x; | |
| 
 | |
| x = Dynamic1D::Zero(size); | |
| x = Dynamic1D::Ones(size); | |
| x = Dynamic1D::Constant(size, value); | |
| x = Dynamic1D::Random(size); | |
| x = Dynamic1D::LinSpaced(size, low, high); | |
| 
 | |
| x.setZero(size); | |
| x.setOnes(size); | |
| x.setConstant(size, value); | |
| x.setRandom(size); | |
| x.setLinSpaced(size, low, high); | |
| \endcode | |
|   </td> | |
| </tr> | |
| 
 | |
| <tr><td colspan="3">Identity and \link MatrixBase::Unit basis vectors \endlink \matrixworld</td></tr> | |
| <tr style="border-bottom-style: none;"> | |
|   <td> | |
| \code | |
| x = FixedXD::Identity(); | |
| x.setIdentity(); | |
| 
 | |
| Vector3f::UnitX() // 1 0 0 | |
| Vector3f::UnitY() // 0 1 0 | |
| Vector3f::UnitZ() // 0 0 1 | |
| \endcode | |
|   </td> | |
|   <td> | |
| \code | |
| x = Dynamic2D::Identity(rows, cols); | |
| x.setIdentity(rows, cols); | |
| 
 | |
| 
 | |
| 
 | |
| N/A | |
| \endcode | |
|   </td> | |
|   <td>\code | |
| N/A | |
| 
 | |
| 
 | |
| VectorXf::Unit(size,i) | |
| VectorXf::Unit(4,1) == Vector4f(0,1,0,0) | |
|                     == Vector4f::UnitY() | |
| \endcode | |
|   </td> | |
| </tr> | |
| </table> | |
| 
 | |
| 
 | |
| 
 | |
| \subsection QuickRef_Map Mapping external arrays | |
| 
 | |
| <table class="manual"> | |
| <tr> | |
| <td>Contiguous \n memory</td> | |
| <td>\code | |
| float data[] = {1,2,3,4}; | |
| Map<Vector3f> v1(data);       // uses v1 as a Vector3f object | |
| Map<ArrayXf>  v2(data,3);     // uses v2 as a ArrayXf object | |
| Map<Array22f> m1(data);       // uses m1 as a Array22f object | |
| Map<MatrixXf> m2(data,2,2);   // uses m2 as a MatrixXf object | |
| \endcode</td> | |
| </tr> | |
| <tr> | |
| <td>Typical usage \n of strides</td> | |
| <td>\code | |
| float data[] = {1,2,3,4,5,6,7,8,9}; | |
| Map<VectorXf,0,InnerStride<2> >  v1(data,3);                      // = [1,3,5] | |
| Map<VectorXf,0,InnerStride<> >   v2(data,3,InnerStride<>(3));     // = [1,4,7] | |
| Map<MatrixXf,0,OuterStride<3> >  m2(data,2,3);                    // both lines     |1,4,7| | |
| Map<MatrixXf,0,OuterStride<> >   m1(data,2,3,OuterStride<>(3));   // are equal to:  |2,5,8| | |
| \endcode</td> | |
| </tr> | |
| </table> | |
| 
 | |
| 
 | |
| <a href="#" class="top">top</a> | |
| \section QuickRef_ArithmeticOperators Arithmetic Operators | |
| 
 | |
| <table class="manual"> | |
| <tr><td> | |
| add \n subtract</td><td>\code | |
| mat3 = mat1 + mat2;           mat3 += mat1; | |
| mat3 = mat1 - mat2;           mat3 -= mat1;\endcode | |
| </td></tr> | |
| <tr class="alt"><td> | |
| scalar product</td><td>\code | |
| mat3 = mat1 * s1;             mat3 *= s1;           mat3 = s1 * mat1; | |
| mat3 = mat1 / s1;             mat3 /= s1;\endcode | |
| </td></tr> | |
| <tr><td> | |
| matrix/vector \n products \matrixworld</td><td>\code | |
| col2 = mat1 * col1; | |
| row2 = row1 * mat1;           row1 *= mat1; | |
| mat3 = mat1 * mat2;           mat3 *= mat1; \endcode | |
| </td></tr> | |
| <tr class="alt"><td> | |
| transposition \n adjoint \matrixworld</td><td>\code | |
| mat1 = mat2.transpose();      mat1.transposeInPlace(); | |
| mat1 = mat2.adjoint();        mat1.adjointInPlace(); | |
| \endcode | |
| </td></tr> | |
| <tr><td> | |
| \link MatrixBase::dot() dot \endlink product \n inner product \matrixworld</td><td>\code | |
| scalar = vec1.dot(vec2); | |
| scalar = col1.adjoint() * col2; | |
| scalar = (col1.adjoint() * col2).value();\endcode | |
| </td></tr> | |
| <tr class="alt"><td> | |
| outer product \matrixworld</td><td>\code | |
| mat = col1 * col2.transpose();\endcode | |
| </td></tr> | |
| 
 | |
| <tr><td> | |
| \link MatrixBase::norm() norm \endlink \n \link MatrixBase::normalized() normalization \endlink \matrixworld</td><td>\code | |
| scalar = vec1.norm();         scalar = vec1.squaredNorm() | |
| vec2 = vec1.normalized();     vec1.normalize(); // inplace \endcode | |
| </td></tr> | |
| 
 | |
| <tr class="alt"><td> | |
| \link MatrixBase::cross() cross product \endlink \matrixworld</td><td>\code | |
| #include <Eigen/Geometry> | |
| vec3 = vec1.cross(vec2);\endcode</td></tr> | |
| </table> | |
| 
 | |
| <a href="#" class="top">top</a> | |
| \section QuickRef_Coeffwise Coefficient-wise \& Array operators | |
| Coefficient-wise operators for matrices and vectors: | |
| <table class="manual"> | |
| <tr><th>Matrix API \matrixworld</th><th>Via Array conversions</th></tr> | |
| <tr><td>\code | |
| mat1.cwiseMin(mat2) | |
| mat1.cwiseMax(mat2) | |
| mat1.cwiseAbs2() | |
| mat1.cwiseAbs() | |
| mat1.cwiseSqrt() | |
| mat1.cwiseProduct(mat2) | |
| mat1.cwiseQuotient(mat2)\endcode | |
| </td><td>\code | |
| mat1.array().min(mat2.array()) | |
| mat1.array().max(mat2.array()) | |
| mat1.array().abs2() | |
| mat1.array().abs() | |
| mat1.array().sqrt() | |
| mat1.array() * mat2.array() | |
| mat1.array() / mat2.array() | |
| \endcode</td></tr> | |
| </table> | |
| 
 | |
| It is also very simple to apply any user defined function \c foo using DenseBase::unaryExpr together with std::ptr_fun: | |
| \code mat1.unaryExpr(std::ptr_fun(foo))\endcode | |
| 
 | |
| Array operators:\arrayworld | |
| 
 | |
| <table class="manual"> | |
| <tr><td>Arithmetic operators</td><td>\code | |
| array1 * array2     array1 / array2     array1 *= array2    array1 /= array2 | |
| array1 + scalar     array1 - scalar     array1 += scalar    array1 -= scalar | |
| \endcode</td></tr> | |
| <tr><td>Comparisons</td><td>\code | |
| array1 < array2     array1 > array2     array1 < scalar     array1 > scalar | |
| array1 <= array2    array1 >= array2    array1 <= scalar    array1 >= scalar | |
| array1 == array2    array1 != array2    array1 == scalar    array1 != scalar | |
| \endcode</td></tr> | |
| <tr><td>Trigo, power, and \n misc functions \n and the STL variants</td><td>\code | |
| array1.min(array2)             | |
| array1.max(array2)             | |
| array1.abs2() | |
| array1.abs()                  abs(array1) | |
| array1.sqrt()                 sqrt(array1) | |
| array1.log()                  log(array1) | |
| array1.exp()                  exp(array1) | |
| array1.pow(exponent)          pow(array1,exponent) | |
| array1.square() | |
| array1.cube() | |
| array1.inverse() | |
| array1.sin()                  sin(array1) | |
| array1.cos()                  cos(array1) | |
| array1.tan()                  tan(array1) | |
| array1.asin()                 asin(array1) | |
| array1.acos()                 acos(array1) | |
| \endcode | |
| </td></tr> | |
| </table> | |
| 
 | |
| <a href="#" class="top">top</a> | |
| \section QuickRef_Reductions Reductions | |
| 
 | |
| Eigen provides several reduction methods such as: | |
| \link DenseBase::minCoeff() minCoeff() \endlink, \link DenseBase::maxCoeff() maxCoeff() \endlink, | |
| \link DenseBase::sum() sum() \endlink, \link DenseBase::prod() prod() \endlink, | |
| \link MatrixBase::trace() trace() \endlink \matrixworld, | |
| \link MatrixBase::norm() norm() \endlink \matrixworld, \link MatrixBase::squaredNorm() squaredNorm() \endlink \matrixworld, | |
| \link DenseBase::all() all() \endlink, and \link DenseBase::any() any() \endlink. | |
| All reduction operations can be done matrix-wise, | |
| \link DenseBase::colwise() column-wise \endlink or | |
| \link DenseBase::rowwise() row-wise \endlink. Usage example: | |
| <table class="manual"> | |
| <tr><td rowspan="3" style="border-right-style:dashed;vertical-align:middle">\code | |
|       5 3 1 | |
| mat = 2 7 8 | |
|       9 4 6 \endcode | |
| </td> <td>\code mat.minCoeff(); \endcode</td><td>\code 1 \endcode</td></tr> | |
| <tr class="alt"><td>\code mat.colwise().minCoeff(); \endcode</td><td>\code 2 3 1 \endcode</td></tr> | |
| <tr style="vertical-align:middle"><td>\code mat.rowwise().minCoeff(); \endcode</td><td>\code | |
| 1 | |
| 2 | |
| 4 | |
| \endcode</td></tr> | |
| </table> | |
| 
 | |
| Special versions of \link DenseBase::minCoeff(IndexType*,IndexType*) const minCoeff \endlink and \link DenseBase::maxCoeff(IndexType*,IndexType*) const maxCoeff \endlink: | |
| \code | |
| int i, j; | |
| s = vector.minCoeff(&i);        // s == vector[i] | |
| s = matrix.maxCoeff(&i, &j);    // s == matrix(i,j) | |
| \endcode | |
| Typical use cases of all() and any(): | |
| \code | |
| if((array1 > 0).all()) ...      // if all coefficients of array1 are greater than 0 ... | |
| if((array1 < array2).any()) ... // if there exist a pair i,j such that array1(i,j) < array2(i,j) ... | |
| \endcode | |
| 
 | |
| 
 | |
| <a href="#" class="top">top</a>\section QuickRef_Blocks Sub-matrices | |
| 
 | |
| Read-write access to a \link DenseBase::col(Index) column \endlink | |
| or a \link DenseBase::row(Index) row \endlink of a matrix (or array): | |
| \code | |
| mat1.row(i) = mat2.col(j); | |
| mat1.col(j1).swap(mat1.col(j2)); | |
| \endcode | |
| 
 | |
| Read-write access to sub-vectors: | |
| <table class="manual"> | |
| <tr> | |
| <th>Default versions</th> | |
| <th>Optimized versions when the size \n is known at compile time</th></tr> | |
| <th></th> | |
| 
 | |
| <tr><td>\code vec1.head(n)\endcode</td><td>\code vec1.head<n>()\endcode</td><td>the first \c n coeffs </td></tr> | |
| <tr><td>\code vec1.tail(n)\endcode</td><td>\code vec1.tail<n>()\endcode</td><td>the last \c n coeffs </td></tr> | |
| <tr><td>\code vec1.segment(pos,n)\endcode</td><td>\code vec1.segment<n>(pos)\endcode</td> | |
|     <td>the \c n coeffs in the \n range [\c pos : \c pos + \c n - 1]</td></tr> | |
| <tr class="alt"><td colspan="3"> | |
| 
 | |
| Read-write access to sub-matrices:</td></tr> | |
| <tr> | |
|   <td>\code mat1.block(i,j,rows,cols)\endcode | |
|       \link DenseBase::block(Index,Index,Index,Index) (more) \endlink</td> | |
|   <td>\code mat1.block<rows,cols>(i,j)\endcode | |
|       \link DenseBase::block(Index,Index) (more) \endlink</td> | |
|   <td>the \c rows x \c cols sub-matrix \n starting from position (\c i,\c j)</td></tr> | |
| <tr><td>\code | |
|  mat1.topLeftCorner(rows,cols) | |
|  mat1.topRightCorner(rows,cols) | |
|  mat1.bottomLeftCorner(rows,cols) | |
|  mat1.bottomRightCorner(rows,cols)\endcode | |
|  <td>\code | |
|  mat1.topLeftCorner<rows,cols>() | |
|  mat1.topRightCorner<rows,cols>() | |
|  mat1.bottomLeftCorner<rows,cols>() | |
|  mat1.bottomRightCorner<rows,cols>()\endcode | |
|  <td>the \c rows x \c cols sub-matrix \n taken in one of the four corners</td></tr> | |
|  <tr><td>\code | |
|  mat1.topRows(rows) | |
|  mat1.bottomRows(rows) | |
|  mat1.leftCols(cols) | |
|  mat1.rightCols(cols)\endcode | |
|  <td>\code | |
|  mat1.topRows<rows>() | |
|  mat1.bottomRows<rows>() | |
|  mat1.leftCols<cols>() | |
|  mat1.rightCols<cols>()\endcode | |
|  <td>specialized versions of block() \n when the block fit two corners</td></tr> | |
| </table> | |
| 
 | |
| 
 | |
| 
 | |
| <a href="#" class="top">top</a>\section QuickRef_Misc Miscellaneous operations | |
| 
 | |
| \subsection QuickRef_Reverse Reverse | |
| Vectors, rows, and/or columns of a matrix can be reversed (see DenseBase::reverse(), DenseBase::reverseInPlace(), VectorwiseOp::reverse()). | |
| \code | |
| vec.reverse()           mat.colwise().reverse()   mat.rowwise().reverse() | |
| vec.reverseInPlace() | |
| \endcode | |
| 
 | |
| \subsection QuickRef_Replicate Replicate | |
| Vectors, matrices, rows, and/or columns can be replicated in any direction (see DenseBase::replicate(), VectorwiseOp::replicate()) | |
| \code | |
| vec.replicate(times)                                          vec.replicate<Times> | |
| mat.replicate(vertical_times, horizontal_times)               mat.replicate<VerticalTimes, HorizontalTimes>() | |
| mat.colwise().replicate(vertical_times, horizontal_times)     mat.colwise().replicate<VerticalTimes, HorizontalTimes>() | |
| mat.rowwise().replicate(vertical_times, horizontal_times)     mat.rowwise().replicate<VerticalTimes, HorizontalTimes>() | |
| \endcode | |
| 
 | |
| 
 | |
| <a href="#" class="top">top</a>\section QuickRef_DiagTriSymm Diagonal, Triangular, and Self-adjoint matrices | |
| (matrix world \matrixworld) | |
| 
 | |
| \subsection QuickRef_Diagonal Diagonal matrices | |
| 
 | |
| <table class="example"> | |
| <tr><th>Operation</th><th>Code</th></tr> | |
| <tr><td> | |
| view a vector \link MatrixBase::asDiagonal() as a diagonal matrix \endlink \n </td><td>\code | |
| mat1 = vec1.asDiagonal();\endcode | |
| </td></tr> | |
| <tr><td> | |
| Declare a diagonal matrix</td><td>\code | |
| DiagonalMatrix<Scalar,SizeAtCompileTime> diag1(size); | |
| diag1.diagonal() = vector;\endcode | |
| </td></tr> | |
| <tr><td>Access the \link MatrixBase::diagonal() diagonal \endlink and \link MatrixBase::diagonal(Index) super/sub diagonals \endlink of a matrix as a vector (read/write)</td> | |
|  <td>\code | |
| vec1 = mat1.diagonal();        mat1.diagonal() = vec1;      // main diagonal | |
| vec1 = mat1.diagonal(+n);      mat1.diagonal(+n) = vec1;    // n-th super diagonal | |
| vec1 = mat1.diagonal(-n);      mat1.diagonal(-n) = vec1;    // n-th sub diagonal | |
| vec1 = mat1.diagonal<1>();     mat1.diagonal<1>() = vec1;   // first super diagonal | |
| vec1 = mat1.diagonal<-2>();    mat1.diagonal<-2>() = vec1;  // second sub diagonal | |
| \endcode</td> | |
| </tr> | |
| 
 | |
| <tr><td>Optimized products and inverse</td> | |
|  <td>\code | |
| mat3  = scalar * diag1 * mat1; | |
| mat3 += scalar * mat1 * vec1.asDiagonal(); | |
| mat3 = vec1.asDiagonal().inverse() * mat1 | |
| mat3 = mat1 * diag1.inverse() | |
| \endcode</td> | |
| </tr> | |
| 
 | |
| </table> | |
| 
 | |
| \subsection QuickRef_TriangularView Triangular views | |
| 
 | |
| TriangularView gives a view on a triangular part of a dense matrix and allows to perform optimized operations on it. The opposite triangular part is never referenced and can be used to store other information. | |
| 
 | |
| \note The .triangularView() template member function requires the \c template keyword if it is used on an | |
| object of a type that depends on a template parameter; see \ref TopicTemplateKeyword for details. | |
| 
 | |
| <table class="example"> | |
| <tr><th>Operation</th><th>Code</th></tr> | |
| <tr><td> | |
| Reference to a triangular with optional \n | |
| unit or null diagonal (read/write): | |
| </td><td>\code | |
| m.triangularView<Xxx>() | |
| \endcode \n | |
| \c Xxx = ::Upper, ::Lower, ::StrictlyUpper, ::StrictlyLower, ::UnitUpper, ::UnitLower | |
| </td></tr> | |
| <tr><td> | |
| Writing to a specific triangular part:\n (only the referenced triangular part is evaluated) | |
| </td><td>\code | |
| m1.triangularView<Eigen::Lower>() = m2 + m3 \endcode | |
| </td></tr> | |
| <tr><td> | |
| Conversion to a dense matrix setting the opposite triangular part to zero: | |
| </td><td>\code | |
| m2 = m1.triangularView<Eigen::UnitUpper>()\endcode | |
| </td></tr> | |
| <tr><td> | |
| Products: | |
| </td><td>\code | |
| m3 += s1 * m1.adjoint().triangularView<Eigen::UnitUpper>() * m2 | |
| m3 -= s1 * m2.conjugate() * m1.adjoint().triangularView<Eigen::Lower>() \endcode | |
| </td></tr> | |
| <tr><td> | |
| Solving linear equations:\n | |
| \f$ M_2 := L_1^{-1} M_2 \f$ \n | |
| \f$ M_3 := {L_1^*}^{-1} M_3 \f$ \n | |
| \f$ M_4 := M_4 U_1^{-1} \f$ | |
| </td><td>\n \code | |
| L1.triangularView<Eigen::UnitLower>().solveInPlace(M2) | |
| L1.triangularView<Eigen::Lower>().adjoint().solveInPlace(M3) | |
| U1.triangularView<Eigen::Upper>().solveInPlace<OnTheRight>(M4)\endcode | |
| </td></tr> | |
| </table> | |
| 
 | |
| \subsection QuickRef_SelfadjointMatrix Symmetric/selfadjoint views | |
| 
 | |
| Just as for triangular matrix, you can reference any triangular part of a square matrix to see it as a selfadjoint | |
| matrix and perform special and optimized operations. Again the opposite triangular part is never referenced and can be | |
| used to store other information. | |
| 
 | |
| \note The .selfadjointView() template member function requires the \c template keyword if it is used on an | |
| object of a type that depends on a template parameter; see \ref TopicTemplateKeyword for details. | |
| 
 | |
| <table class="example"> | |
| <tr><th>Operation</th><th>Code</th></tr> | |
| <tr><td> | |
| Conversion to a dense matrix: | |
| </td><td>\code | |
| m2 = m.selfadjointView<Eigen::Lower>();\endcode | |
| </td></tr> | |
| <tr><td> | |
| Product with another general matrix or vector: | |
| </td><td>\code | |
| m3  = s1 * m1.conjugate().selfadjointView<Eigen::Upper>() * m3; | |
| m3 -= s1 * m3.adjoint() * m1.selfadjointView<Eigen::Lower>();\endcode | |
| </td></tr> | |
| <tr><td> | |
| Rank 1 and rank K update: \n | |
| \f$ upper(M_1) \mathrel{{+}{=}} s_1 M_2 M_2^* \f$ \n | |
| \f$ lower(M_1) \mathbin{{-}{=}} M_2^* M_2 \f$ | |
| </td><td>\n \code | |
| M1.selfadjointView<Eigen::Upper>().rankUpdate(M2,s1); | |
| M1.selfadjointView<Eigen::Lower>().rankUpdate(M2.adjoint(),-1); \endcode | |
| </td></tr> | |
| <tr><td> | |
| Rank 2 update: (\f$ M \mathrel{{+}{=}} s u v^* + s v u^* \f$) | |
| </td><td>\code | |
| M.selfadjointView<Eigen::Upper>().rankUpdate(u,v,s); | |
| \endcode | |
| </td></tr> | |
| <tr><td> | |
| Solving linear equations:\n(\f$ M_2 := M_1^{-1} M_2 \f$) | |
| </td><td>\code | |
| // via a standard Cholesky factorization | |
| m2 = m1.selfadjointView<Eigen::Upper>().llt().solve(m2); | |
| // via a Cholesky factorization with pivoting | |
| m2 = m1.selfadjointView<Eigen::Lower>().ldlt().solve(m2); | |
| \endcode | |
| </td></tr> | |
| </table> | |
| 
 | |
| */ | |
| 
 | |
| /* | |
| <table class="tutorial_code"> | |
| <tr><td> | |
| \link MatrixBase::asDiagonal() make a diagonal matrix \endlink \n from a vector </td><td>\code | |
| mat1 = vec1.asDiagonal();\endcode | |
| </td></tr> | |
| <tr><td> | |
| Declare a diagonal matrix</td><td>\code | |
| DiagonalMatrix<Scalar,SizeAtCompileTime> diag1(size); | |
| diag1.diagonal() = vector;\endcode | |
| </td></tr> | |
| <tr><td>Access \link MatrixBase::diagonal() the diagonal and super/sub diagonals of a matrix \endlink as a vector (read/write)</td> | |
|  <td>\code | |
| vec1 = mat1.diagonal();            mat1.diagonal() = vec1;      // main diagonal | |
| vec1 = mat1.diagonal(+n);          mat1.diagonal(+n) = vec1;    // n-th super diagonal | |
| vec1 = mat1.diagonal(-n);          mat1.diagonal(-n) = vec1;    // n-th sub diagonal | |
| vec1 = mat1.diagonal<1>();         mat1.diagonal<1>() = vec1;   // first super diagonal | |
| vec1 = mat1.diagonal<-2>();        mat1.diagonal<-2>() = vec1;  // second sub diagonal | |
| \endcode</td> | |
| </tr> | |
| 
 | |
| <tr><td>View on a triangular part of a matrix (read/write)</td> | |
|  <td>\code | |
| mat2 = mat1.triangularView<Xxx>(); | |
| // Xxx = Upper, Lower, StrictlyUpper, StrictlyLower, UnitUpper, UnitLower | |
| mat1.triangularView<Upper>() = mat2 + mat3; // only the upper part is evaluated and referenced | |
| \endcode</td></tr> | |
| 
 | |
| <tr><td>View a triangular part as a symmetric/self-adjoint matrix (read/write)</td> | |
|  <td>\code | |
| mat2 = mat1.selfadjointView<Xxx>();     // Xxx = Upper or Lower | |
| mat1.selfadjointView<Upper>() = mat2 + mat2.adjoint();  // evaluated and write to the upper triangular part only | |
| \endcode</td></tr> | |
| 
 | |
| </table> | |
| 
 | |
| Optimized products: | |
| \code | |
| mat3 += scalar * vec1.asDiagonal() * mat1 | |
| mat3 += scalar * mat1 * vec1.asDiagonal() | |
| mat3.noalias() += scalar * mat1.triangularView<Xxx>() * mat2 | |
| mat3.noalias() += scalar * mat2 * mat1.triangularView<Xxx>() | |
| mat3.noalias() += scalar * mat1.selfadjointView<Upper or Lower>() * mat2 | |
| mat3.noalias() += scalar * mat2 * mat1.selfadjointView<Upper or Lower>() | |
| mat1.selfadjointView<Upper or Lower>().rankUpdate(mat2); | |
| mat1.selfadjointView<Upper or Lower>().rankUpdate(mat2.adjoint(), scalar); | |
| \endcode | |
| 
 | |
| Inverse products: (all are optimized) | |
| \code | |
| mat3 = vec1.asDiagonal().inverse() * mat1 | |
| mat3 = mat1 * diag1.inverse() | |
| mat1.triangularView<Xxx>().solveInPlace(mat2) | |
| mat1.triangularView<Xxx>().solveInPlace<OnTheRight>(mat2) | |
| mat2 = mat1.selfadjointView<Upper or Lower>().llt().solve(mat2) | |
| \endcode | |
| 
 | |
| */ | |
| }
 |