You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							150 lines
						
					
					
						
							5.2 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							150 lines
						
					
					
						
							5.2 KiB
						
					
					
				| // This file is part of Eigen, a lightweight C++ template library | |
| // for linear algebra. | |
| // | |
| // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> | |
| // Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com> | |
| // | |
| // This Source Code Form is subject to the terms of the Mozilla | |
| // Public License v. 2.0. If a copy of the MPL was not distributed | |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | |
|  | |
| #include "main.h" | |
| #include <Eigen/QR> | |
|  | |
| template<typename MatrixType> void qr() | |
| { | |
|   typedef typename MatrixType::Index Index; | |
| 
 | |
|   Index rows = internal::random<Index>(2,EIGEN_TEST_MAX_SIZE), cols = internal::random<Index>(2,EIGEN_TEST_MAX_SIZE), cols2 = internal::random<Index>(2,EIGEN_TEST_MAX_SIZE); | |
|   Index rank = internal::random<Index>(1, (std::min)(rows, cols)-1); | |
| 
 | |
|   typedef typename MatrixType::Scalar Scalar; | |
|   typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> MatrixQType; | |
|   MatrixType m1; | |
|   createRandomPIMatrixOfRank(rank,rows,cols,m1); | |
|   ColPivHouseholderQR<MatrixType> qr(m1); | |
|   VERIFY(rank == qr.rank()); | |
|   VERIFY(cols - qr.rank() == qr.dimensionOfKernel()); | |
|   VERIFY(!qr.isInjective()); | |
|   VERIFY(!qr.isInvertible()); | |
|   VERIFY(!qr.isSurjective()); | |
| 
 | |
|   MatrixQType q = qr.householderQ(); | |
|   VERIFY_IS_UNITARY(q); | |
| 
 | |
|   MatrixType r = qr.matrixQR().template triangularView<Upper>(); | |
|   MatrixType c = q * r * qr.colsPermutation().inverse(); | |
|   VERIFY_IS_APPROX(m1, c); | |
| 
 | |
|   MatrixType m2 = MatrixType::Random(cols,cols2); | |
|   MatrixType m3 = m1*m2; | |
|   m2 = MatrixType::Random(cols,cols2); | |
|   m2 = qr.solve(m3); | |
|   VERIFY_IS_APPROX(m3, m1*m2); | |
| } | |
| 
 | |
| template<typename MatrixType, int Cols2> void qr_fixedsize() | |
| { | |
|   enum { Rows = MatrixType::RowsAtCompileTime, Cols = MatrixType::ColsAtCompileTime }; | |
|   typedef typename MatrixType::Scalar Scalar; | |
|   int rank = internal::random<int>(1, (std::min)(int(Rows), int(Cols))-1); | |
|   Matrix<Scalar,Rows,Cols> m1; | |
|   createRandomPIMatrixOfRank(rank,Rows,Cols,m1); | |
|   ColPivHouseholderQR<Matrix<Scalar,Rows,Cols> > qr(m1); | |
|   VERIFY(rank == qr.rank()); | |
|   VERIFY(Cols - qr.rank() == qr.dimensionOfKernel()); | |
|   VERIFY(qr.isInjective() == (rank == Rows)); | |
|   VERIFY(qr.isSurjective() == (rank == Cols)); | |
|   VERIFY(qr.isInvertible() == (qr.isInjective() && qr.isSurjective())); | |
| 
 | |
|   Matrix<Scalar,Rows,Cols> r = qr.matrixQR().template triangularView<Upper>(); | |
|   Matrix<Scalar,Rows,Cols> c = qr.householderQ() * r * qr.colsPermutation().inverse(); | |
|   VERIFY_IS_APPROX(m1, c); | |
| 
 | |
|   Matrix<Scalar,Cols,Cols2> m2 = Matrix<Scalar,Cols,Cols2>::Random(Cols,Cols2); | |
|   Matrix<Scalar,Rows,Cols2> m3 = m1*m2; | |
|   m2 = Matrix<Scalar,Cols,Cols2>::Random(Cols,Cols2); | |
|   m2 = qr.solve(m3); | |
|   VERIFY_IS_APPROX(m3, m1*m2); | |
| } | |
| 
 | |
| template<typename MatrixType> void qr_invertible() | |
| { | |
|   using std::log; | |
|   using std::abs; | |
|   typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar; | |
|   typedef typename MatrixType::Scalar Scalar; | |
| 
 | |
|   int size = internal::random<int>(10,50); | |
| 
 | |
|   MatrixType m1(size, size), m2(size, size), m3(size, size); | |
|   m1 = MatrixType::Random(size,size); | |
| 
 | |
|   if (internal::is_same<RealScalar,float>::value) | |
|   { | |
|     // let's build a matrix more stable to inverse | |
|     MatrixType a = MatrixType::Random(size,size*2); | |
|     m1 += a * a.adjoint(); | |
|   } | |
| 
 | |
|   ColPivHouseholderQR<MatrixType> qr(m1); | |
|   m3 = MatrixType::Random(size,size); | |
|   m2 = qr.solve(m3); | |
|   //VERIFY_IS_APPROX(m3, m1*m2); | |
|  | |
|   // now construct a matrix with prescribed determinant | |
|   m1.setZero(); | |
|   for(int i = 0; i < size; i++) m1(i,i) = internal::random<Scalar>(); | |
|   RealScalar absdet = abs(m1.diagonal().prod()); | |
|   m3 = qr.householderQ(); // get a unitary | |
|   m1 = m3 * m1 * m3; | |
|   qr.compute(m1); | |
|   VERIFY_IS_APPROX(absdet, qr.absDeterminant()); | |
|   VERIFY_IS_APPROX(log(absdet), qr.logAbsDeterminant()); | |
| } | |
| 
 | |
| template<typename MatrixType> void qr_verify_assert() | |
| { | |
|   MatrixType tmp; | |
| 
 | |
|   ColPivHouseholderQR<MatrixType> qr; | |
|   VERIFY_RAISES_ASSERT(qr.matrixQR()) | |
|   VERIFY_RAISES_ASSERT(qr.solve(tmp)) | |
|   VERIFY_RAISES_ASSERT(qr.householderQ()) | |
|   VERIFY_RAISES_ASSERT(qr.dimensionOfKernel()) | |
|   VERIFY_RAISES_ASSERT(qr.isInjective()) | |
|   VERIFY_RAISES_ASSERT(qr.isSurjective()) | |
|   VERIFY_RAISES_ASSERT(qr.isInvertible()) | |
|   VERIFY_RAISES_ASSERT(qr.inverse()) | |
|   VERIFY_RAISES_ASSERT(qr.absDeterminant()) | |
|   VERIFY_RAISES_ASSERT(qr.logAbsDeterminant()) | |
| } | |
| 
 | |
| void test_qr_colpivoting() | |
| { | |
|   for(int i = 0; i < g_repeat; i++) { | |
|     CALL_SUBTEST_1( qr<MatrixXf>() ); | |
|     CALL_SUBTEST_2( qr<MatrixXd>() ); | |
|     CALL_SUBTEST_3( qr<MatrixXcd>() ); | |
|     CALL_SUBTEST_4(( qr_fixedsize<Matrix<float,3,5>, 4 >() )); | |
|     CALL_SUBTEST_5(( qr_fixedsize<Matrix<double,6,2>, 3 >() )); | |
|     CALL_SUBTEST_5(( qr_fixedsize<Matrix<double,1,1>, 1 >() )); | |
|   } | |
| 
 | |
|   for(int i = 0; i < g_repeat; i++) { | |
|     CALL_SUBTEST_1( qr_invertible<MatrixXf>() ); | |
|     CALL_SUBTEST_2( qr_invertible<MatrixXd>() ); | |
|     CALL_SUBTEST_6( qr_invertible<MatrixXcf>() ); | |
|     CALL_SUBTEST_3( qr_invertible<MatrixXcd>() ); | |
|   } | |
| 
 | |
|   CALL_SUBTEST_7(qr_verify_assert<Matrix3f>()); | |
|   CALL_SUBTEST_8(qr_verify_assert<Matrix3d>()); | |
|   CALL_SUBTEST_1(qr_verify_assert<MatrixXf>()); | |
|   CALL_SUBTEST_2(qr_verify_assert<MatrixXd>()); | |
|   CALL_SUBTEST_6(qr_verify_assert<MatrixXcf>()); | |
|   CALL_SUBTEST_3(qr_verify_assert<MatrixXcd>()); | |
| 
 | |
|   // Test problem size constructors | |
|   CALL_SUBTEST_9(ColPivHouseholderQR<MatrixXf>(10, 20)); | |
| }
 |