You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

777 lines
25 KiB

#include <argp.h>
#include <assert.h>
#include <inttypes.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/time.h>
#include <sylvan_int.h>
/* Configuration */
static int workers = 0; // autodetect
static int verbose = 0;
static char* model_filename = NULL; // filename of model
static char* bdd_filename = NULL; // filename of output BDD
static char* sizes = "22,27,21,26"; // default sizes
static int check_results = 0;
/* argp configuration */
static struct argp_option options[] =
{
{"workers", 'w', "<workers>", 0, "Number of workers (default=0: autodetect)", 0},
{"table-sizes", 1, "<tablesize>,<tablemax>,<cachesize>,<cachemax>", 0, "Sizes of nodes table and operation cache as powers of 2", 0},
{"check-results", 2, 0, 0, "Check new transition relations ", 0},
{"verbose", 'v', 0, 0, "Set verbose", 0},
{0, 0, 0, 0, 0, 0}
};
static error_t
parse_opt(int key, char *arg, struct argp_state *state)
{
switch (key) {
case 'w':
workers = atoi(arg);
break;
case 'v':
verbose = 1;
break;
case 1:
sizes = arg;
break;
case 2:
check_results = 1;
break;
case ARGP_KEY_ARG:
if (state->arg_num == 0) model_filename = arg;
if (state->arg_num == 1) bdd_filename = arg;
if (state->arg_num >= 2) argp_usage(state);
break;
case ARGP_KEY_END:
if (state->arg_num < 2) argp_usage(state);
break;
default:
return ARGP_ERR_UNKNOWN;
}
return 0;
}
static struct argp argp = { options, parse_opt, "<model> [<output-bdd>]", 0, 0, 0, 0 };
/* Globals */
typedef struct set
{
MDD mdd;
MDD proj;
} *set_t;
typedef struct relation
{
MDD mdd;
MDD meta;
} *rel_t;
static size_t vector_size; // size of vector
static int next_count; // number of partitions of the transition relation
static rel_t *next; // each partition of the transition relation
static int actionbits = 0;
static int has_actions = 0;
#define Abort(...) { fprintf(stderr, __VA_ARGS__); exit(-1); }
/* Load a set from file */
#define set_load(f) CALL(set_load, f)
TASK_1(set_t, set_load, FILE*, f)
{
lddmc_serialize_fromfile(f);
size_t mdd;
size_t proj;
int size;
if (fread(&mdd, sizeof(size_t), 1, f) != 1) Abort("Invalid input file!\n");
if (fread(&proj, sizeof(size_t), 1, f) != 1) Abort("Invalid input file!\n");
if (fread(&size, sizeof(int), 1, f) != 1) Abort("Invalid input file!\n");
set_t set = (set_t)malloc(sizeof(struct set));
set->mdd = lddmc_ref(lddmc_serialize_get_reversed(mdd));
set->proj = lddmc_ref(lddmc_serialize_get_reversed(proj));
return set;
}
/* Load a relation from file */
#define rel_load(f) CALL(rel_load, f)
TASK_1(rel_t, rel_load, FILE*, f)
{
lddmc_serialize_fromfile(f);
size_t mdd;
size_t meta;
if (fread(&mdd, sizeof(size_t), 1, f) != 1) Abort("Invalid input file!\n");
if (fread(&meta, sizeof(size_t), 1, f) != 1) Abort("Invalid input file!\n");
rel_t rel = (rel_t)malloc(sizeof(struct relation));
rel->mdd = lddmc_ref(lddmc_serialize_get_reversed(mdd));
rel->meta = lddmc_ref(lddmc_serialize_get_reversed(meta));
return rel;
}
/**
* Compute the highest value for each variable level.
* This method is called for the set of reachable states.
*/
static uint64_t compute_highest_id;
#define compute_highest(dd, arr) CALL(compute_highest, dd, arr)
VOID_TASK_2(compute_highest, MDD, dd, uint32_t*, arr)
{
if (dd == lddmc_true || dd == lddmc_false) return;
uint64_t result = 1;
if (cache_get3(compute_highest_id, dd, 0, 0, &result)) return;
cache_put3(compute_highest_id, dd, 0, 0, result);
mddnode_t n = LDD_GETNODE(dd);
SPAWN(compute_highest, mddnode_getright(n), arr);
CALL(compute_highest, mddnode_getdown(n), arr+1);
SYNC(compute_highest);
if (!mddnode_getcopy(n)) {
const uint32_t v = mddnode_getvalue(n);
while (1) {
const uint32_t cur = *(volatile uint32_t*)arr;
if (v <= cur) break;
if (__sync_bool_compare_and_swap(arr, cur, v)) break;
}
}
}
/**
* Compute the highest value for the action label.
* This method is called for each transition relation.
*/
static uint64_t compute_highest_action_id;
#define compute_highest_action(dd, meta, arr) CALL(compute_highest_action, dd, meta, arr)
VOID_TASK_3(compute_highest_action, MDD, dd, MDD, meta, uint32_t*, target)
{
if (dd == lddmc_true || dd == lddmc_false) return;
if (meta == lddmc_true) return;
uint64_t result = 1;
if (cache_get3(compute_highest_action_id, dd, meta, 0, &result)) return;
cache_put3(compute_highest_action_id, dd, meta, 0, result);
/* meta:
* 0 is skip
* 1 is read
* 2 is write
* 3 is only-read
* 4 is only-write
* 5 is action label (at end, before -1)
* -1 is end
*/
const mddnode_t n = LDD_GETNODE(dd);
const mddnode_t nmeta = LDD_GETNODE(meta);
const uint32_t vmeta = mddnode_getvalue(nmeta);
if (vmeta == (uint32_t)-1) return;
SPAWN(compute_highest_action, mddnode_getright(n), meta, target);
CALL(compute_highest_action, mddnode_getdown(n), mddnode_getdown(nmeta), target);
SYNC(compute_highest_action);
if (vmeta == 5) {
has_actions = 1;
const uint32_t v = mddnode_getvalue(n);
while (1) {
const uint32_t cur = *(volatile uint32_t*)target;
if (v <= cur) break;
if (__sync_bool_compare_and_swap(target, cur, v)) break;
}
}
}
/**
* Compute the BDD equivalent of the LDD of a set of states.
*/
static uint64_t bdd_from_ldd_id;
#define bdd_from_ldd(dd, bits, firstvar) CALL(bdd_from_ldd, dd, bits, firstvar)
TASK_3(MTBDD, bdd_from_ldd, MDD, dd, MDD, bits_mdd, uint32_t, firstvar)
{
/* simple for leaves */
if (dd == lddmc_false) return mtbdd_false;
if (dd == lddmc_true) return mtbdd_true;
MTBDD result;
/* get from cache */
/* note: some assumptions about the encoding... */
if (cache_get3(bdd_from_ldd_id, dd, bits_mdd, firstvar, &result)) return result;
mddnode_t n = LDD_GETNODE(dd);
mddnode_t nbits = LDD_GETNODE(bits_mdd);
int bits = (int)mddnode_getvalue(nbits);
/* spawn right, same bits_mdd and firstvar */
mtbdd_refs_spawn(SPAWN(bdd_from_ldd, mddnode_getright(n), bits_mdd, firstvar));
/* call down, with next bits_mdd and firstvar */
MTBDD down = CALL(bdd_from_ldd, mddnode_getdown(n), mddnode_getdown(nbits), firstvar + 2*bits);
/* encode current value */
uint32_t val = mddnode_getvalue(n);
for (int i=0; i<bits; i++) {
/* encode with high bit first */
int bit = bits-i-1;
if (val & (1LL<<i)) down = mtbdd_makenode(firstvar + 2*bit, mtbdd_false, down);
else down = mtbdd_makenode(firstvar + 2*bit, down, mtbdd_false);
}
/* sync right */
mtbdd_refs_push(down);
MTBDD right = mtbdd_refs_sync(SYNC(bdd_from_ldd));
/* take union of current and right */
mtbdd_refs_push(right);
result = sylvan_or(down, right);
mtbdd_refs_pop(2);
/* put in cache */
cache_put3(bdd_from_ldd_id, dd, bits_mdd, firstvar, result);
return result;
}
/**
* Compute the BDD equivalent of an LDD transition relation.
*/
static uint64_t bdd_from_ldd_rel_id;
#define bdd_from_ldd_rel(dd, bits, firstvar, meta) CALL(bdd_from_ldd_rel, dd, bits, firstvar, meta)
TASK_4(MTBDD, bdd_from_ldd_rel, MDD, dd, MDD, bits_mdd, uint32_t, firstvar, MDD, meta)
{
if (dd == lddmc_false) return mtbdd_false;
if (dd == lddmc_true) return mtbdd_true;
assert(meta != lddmc_false && meta != lddmc_true);
/* meta:
* -1 is end
* 0 is skip
* 1 is read
* 2 is write
* 3 is only-read
* 4 is only-write
*/
MTBDD result;
/* note: assumptions */
if (cache_get4(bdd_from_ldd_rel_id, dd, bits_mdd, firstvar, meta, &result)) return result;
const mddnode_t n = LDD_GETNODE(dd);
const mddnode_t nmeta = LDD_GETNODE(meta);
const mddnode_t nbits = LDD_GETNODE(bits_mdd);
const int bits = (int)mddnode_getvalue(nbits);
const uint32_t vmeta = mddnode_getvalue(nmeta);
assert(vmeta != (uint32_t)-1);
if (vmeta == 0) {
/* skip level */
result = bdd_from_ldd_rel(dd, mddnode_getdown(nbits), firstvar + 2*bits, mddnode_getdown(nmeta));
} else if (vmeta == 1) {
/* read level */
assert(!mddnode_getcopy(n)); // do not process read copy nodes for now
assert(mddnode_getright(n) != mtbdd_true);
/* spawn right */
mtbdd_refs_spawn(SPAWN(bdd_from_ldd_rel, mddnode_getright(n), bits_mdd, firstvar, meta));
/* compute down with same bits / firstvar */
MTBDD down = bdd_from_ldd_rel(mddnode_getdown(n), bits_mdd, firstvar, mddnode_getdown(nmeta));
mtbdd_refs_push(down);
/* encode read value */
uint32_t val = mddnode_getvalue(n);
MTBDD part = mtbdd_true;
for (int i=0; i<bits; i++) {
/* encode with high bit first */
int bit = bits-i-1;
if (val & (1LL<<i)) part = mtbdd_makenode(firstvar + 2*bit, mtbdd_false, part);
else part = mtbdd_makenode(firstvar + 2*bit, part, mtbdd_false);
}
/* intersect read value with down result */
mtbdd_refs_push(part);
down = sylvan_and(part, down);
mtbdd_refs_pop(2);
/* sync right */
mtbdd_refs_push(down);
MTBDD right = mtbdd_refs_sync(SYNC(bdd_from_ldd_rel));
/* take union of current and right */
mtbdd_refs_push(right);
result = sylvan_or(down, right);
mtbdd_refs_pop(2);
} else if (vmeta == 2 || vmeta == 4) {
/* write or only-write level */
/* spawn right */
assert(mddnode_getright(n) != mtbdd_true);
mtbdd_refs_spawn(SPAWN(bdd_from_ldd_rel, mddnode_getright(n), bits_mdd, firstvar, meta));
/* get recursive result */
MTBDD down = CALL(bdd_from_ldd_rel, mddnode_getdown(n), mddnode_getdown(nbits), firstvar + 2*bits, mddnode_getdown(nmeta));
if (mddnode_getcopy(n)) {
/* encode a copy node */
for (int i=0; i<bits; i++) {
int bit = bits-i-1;
MTBDD low = mtbdd_makenode(firstvar + 2*bit + 1, down, mtbdd_false);
mtbdd_refs_push(low);
MTBDD high = mtbdd_makenode(firstvar + 2*bit + 1, mtbdd_false, down);
mtbdd_refs_pop(1);
down = mtbdd_makenode(firstvar + 2*bit, low, high);
}
} else {
/* encode written value */
uint32_t val = mddnode_getvalue(n);
for (int i=0; i<bits; i++) {
/* encode with high bit first */
int bit = bits-i-1;
if (val & (1LL<<i)) down = mtbdd_makenode(firstvar + 2*bit + 1, mtbdd_false, down);
else down = mtbdd_makenode(firstvar + 2*bit + 1, down, mtbdd_false);
}
}
/* sync right */
mtbdd_refs_push(down);
MTBDD right = mtbdd_refs_sync(SYNC(bdd_from_ldd_rel));
/* take union of current and right */
mtbdd_refs_push(right);
result = sylvan_or(down, right);
mtbdd_refs_pop(2);
} else if (vmeta == 3) {
/* only-read level */
assert(!mddnode_getcopy(n)); // do not process read copy nodes
/* spawn right */
mtbdd_refs_spawn(SPAWN(bdd_from_ldd_rel, mddnode_getright(n), bits_mdd, firstvar, meta));
/* get recursive result */
MTBDD down = CALL(bdd_from_ldd_rel, mddnode_getdown(n), mddnode_getdown(nbits), firstvar + 2*bits, mddnode_getdown(nmeta));
/* encode read value */
uint32_t val = mddnode_getvalue(n);
for (int i=0; i<bits; i++) {
/* encode with high bit first */
int bit = bits-i-1;
/* only-read, so write same value */
if (val & (1LL<<i)) down = mtbdd_makenode(firstvar + 2*bit + 1, mtbdd_false, down);
else down = mtbdd_makenode(firstvar + 2*bit + 1, down, mtbdd_false);
if (val & (1LL<<i)) down = mtbdd_makenode(firstvar + 2*bit, mtbdd_false, down);
else down = mtbdd_makenode(firstvar + 2*bit, down, mtbdd_false);
}
/* sync right */
mtbdd_refs_push(down);
MTBDD right = mtbdd_refs_sync(SYNC(bdd_from_ldd_rel));
/* take union of current and right */
mtbdd_refs_push(right);
result = sylvan_or(down, right);
mtbdd_refs_pop(2);
} else if (vmeta == 5) {
assert(!mddnode_getcopy(n)); // not allowed!
/* we assume this is the last value */
result = mtbdd_true;
/* encode action value */
uint32_t val = mddnode_getvalue(n);
for (int i=0; i<actionbits; i++) {
/* encode with high bit first */
int bit = actionbits-i-1;
/* only-read, so write same value */
if (val & (1LL<<i)) result = mtbdd_makenode(1000000 + bit, mtbdd_false, result);
else result = mtbdd_makenode(1000000 + bit, result, mtbdd_false);
}
} else {
assert(vmeta <= 5);
}
cache_put4(bdd_from_ldd_rel_id, dd, bits_mdd, firstvar, meta, result);
return result;
}
/**
* Compute the BDD equivalent of the meta variable (to a variables cube)
*/
MTBDD
meta_to_bdd(MDD meta, MDD bits_mdd, uint32_t firstvar)
{
if (meta == lddmc_false || meta == lddmc_true) return mtbdd_true;
/* meta:
* -1 is end
* 0 is skip (no variables)
* 1 is read (variables added by write)
* 2 is write
* 3 is only-read
* 4 is only-write
*/
const mddnode_t nmeta = LDD_GETNODE(meta);
const uint32_t vmeta = mddnode_getvalue(nmeta);
if (vmeta == (uint32_t)-1) return mtbdd_true;
if (vmeta == 1) {
/* return recursive result, don't go down on bits */
return meta_to_bdd(mddnode_getdown(nmeta), bits_mdd, firstvar);
}
const mddnode_t nbits = LDD_GETNODE(bits_mdd);
const int bits = (int)mddnode_getvalue(nbits);
/* compute recursive result */
MTBDD res = meta_to_bdd(mddnode_getdown(nmeta), mddnode_getdown(nbits), firstvar + 2*bits);
/* add our variables if meta is 2,3,4 */
if (vmeta != 0 && vmeta != 5) {
for (int i=0; i<bits; i++) {
res = mtbdd_makenode(firstvar + 2*(bits-i-1) + 1, mtbdd_false, res);
res = mtbdd_makenode(firstvar + 2*(bits-i-1), mtbdd_false, res);
}
}
return res;
}
static char*
to_h(double size, char *buf)
{
const char* units[] = {"B", "KB", "MB", "GB", "TB", "PB", "EB", "ZB", "YB"};
int i = 0;
for (;size>1024;size/=1024) i++;
sprintf(buf, "%.*f %s", i, size, units[i]);
return buf;
}
VOID_TASK_0(gc_start)
{
printf("Starting garbage collection\n");
}
VOID_TASK_0(gc_end)
{
printf("Garbage collection done\n");
}
int
main(int argc, char **argv)
{
argp_parse(&argp, argc, argv, 0, 0, 0);
// Parse table sizes
int tablesize, maxtablesize, cachesize, maxcachesize;
if (sscanf(sizes, "%d,%d,%d,%d", &tablesize, &maxtablesize, &cachesize, &maxcachesize) != 4) {
Abort("Invalid string for --table-sizes, try e.g. --table-sizes=23,28,22,27");
}
if (tablesize < 10 || maxtablesize < 10 || cachesize < 10 || maxcachesize < 10 ||
tablesize > 40 || maxtablesize > 40 || cachesize > 40 || maxcachesize > 40) {
Abort("Invalid string for --table-sizes, must be between 10 and 40");
}
if (tablesize > maxtablesize) {
Abort("Invalid string for --table-sizes, tablesize is larger than maxtablesize");
}
if (cachesize > maxcachesize) {
Abort("Invalid string for --table-sizes, cachesize is larger than maxcachesize");
}
// Report table sizes
char buf[32];
to_h((1ULL<<maxtablesize)*24+(1ULL<<maxcachesize)*36, buf);
printf("Sylvan allocates %s virtual memory for nodes table and operation cache.\n", buf);
to_h((1ULL<<tablesize)*24+(1ULL<<cachesize)*36, buf);
printf("Initial nodes table and operation cache requires %s.\n", buf);
// Init Lace
lace_init(workers, 1000000); // auto-detect number of workers, use a 1,000,000 size task queue
lace_startup(0, NULL, NULL); // auto-detect program stack, do not use a callback for startup
LACE_ME;
// Init Sylvan
sylvan_set_sizes(1LL<<21, 1LL<<27, 1LL<<20, 1LL<<26);
sylvan_init_package();
sylvan_init_ldd();
sylvan_init_mtbdd();
sylvan_gc_hook_pregc(TASK(gc_start));
sylvan_gc_hook_postgc(TASK(gc_end));
// Obtain operation ids for the operation cache
compute_highest_id = cache_next_opid();
compute_highest_action_id = cache_next_opid();
bdd_from_ldd_id = cache_next_opid();
bdd_from_ldd_rel_id = cache_next_opid();
// Open file
FILE *f = fopen(model_filename, "r");
if (f == NULL) Abort("Cannot open file '%s'!\n", model_filename);
// Read integers per vector
if (fread(&vector_size, sizeof(size_t), 1, f) != 1) Abort("Invalid input file!\n");
// Read initial state
if (verbose) {
printf("Loading initial state... ");
fflush(stdout);
}
set_t initial = set_load(f);
if (verbose) printf("done.\n");
// Read number of transitions
if (fread(&next_count, sizeof(int), 1, f) != 1) Abort("Invalid input file!\n");
next = (rel_t*)malloc(sizeof(rel_t) * next_count);
// Read transitions
if (verbose) {
printf("Loading transition relations... ");
fflush(stdout);
}
int i;
for (i=0; i<next_count; i++) {
next[i] = rel_load(f);
if (verbose) {
printf("%d, ", i);
fflush(stdout);
}
}
if (verbose) printf("done.\n");
// Read whether reachable states are stored
int has_reachable = 0;
if (fread(&has_reachable, sizeof(int), 1, f) != 1) Abort("Input file missing reachable states!\n");
if (has_reachable == 0) Abort("Input file missing reachable states!\n");
// Read reachable states
if (verbose) {
printf("Loading reachable states... ");
fflush(stdout);
}
set_t states = set_load(f);
if (verbose) printf("done.\n");
// Read number of action labels
int action_labels_count = 0;
if (fread(&action_labels_count, sizeof(int), 1, f) != 1) Abort("Input file missing action label count!\n");
// Read action labels
char *action_labels[action_labels_count];
for (int i=0; i<action_labels_count; i++) {
uint32_t len;
if (fread(&len, sizeof(uint32_t), 1, f) != 1) Abort("Invalid input file!\n");
action_labels[i] = (char*)malloc(sizeof(char[len+1]));
if (fread(action_labels[i], sizeof(char), len, f) != len) Abort("Invalid input file!\n");
action_labels[i][len] = 0;
}
// Close file
fclose(f);
// Report that we have read the input file
printf("Read file %s.\n", argv[1]);
// Report statistics
if (verbose) {
printf("%zu integers per state, %d transition groups\n", vector_size, next_count);
printf("LDD nodes:\n");
printf("Initial states: %zu LDD nodes\n", lddmc_nodecount(initial->mdd));
for (i=0; i<next_count; i++) {
printf("Transition %d: %zu LDD nodes\n", i, lddmc_nodecount(next[i]->mdd));
}
}
// Report that we prepare BDD conversion
if (verbose) printf("Preparing conversion to BDD...\n");
// Compute highest value at each level (from reachable states)
uint32_t highest[vector_size];
for (size_t i=0; i<vector_size; i++) highest[i] = 0;
compute_highest(states->mdd, highest);
// Compute highest action label value (from transition relations)
uint32_t highest_action = 0;
for (int i=0; i<next_count; i++) {
compute_highest_action(next[i]->mdd, next[i]->meta, &highest_action);
}
// Report highest integers
/*
printf("Highest integer per level: ");
for (size_t i=0; i<vector_size; i++) {
if (i>0) printf(", ");
printf("%u", highest[i]);
}
printf("\n");
*/
// Compute number of bits for each level
int bits[vector_size];
for (size_t i=0; i<vector_size; i++) {
bits[i] = 0;
while (highest[i] != 0) {
bits[i]++;
highest[i]>>=1;
}
if (bits[i] == 0) bits[i] = 1;
}
// Compute number of bits for action label
actionbits = 0;
while (highest_action != 0) {
actionbits++;
highest_action>>=1;
}
if (actionbits == 0 && has_actions) actionbits = 1;
// Report number of bits
if (verbose) {
printf("Bits per level: ");
for (size_t i=0; i<vector_size; i++) {
if (i>0) printf(", ");
printf("%d", bits[i]);
}
printf("\n");
printf("Action bits: %d.\n", actionbits);
}
// Compute bits MDD
MDD bits_mdd = lddmc_true;
for (size_t i=0; i<vector_size; i++) {
bits_mdd = lddmc_makenode(bits[vector_size-i-1], bits_mdd, lddmc_false);
}
lddmc_ref(bits_mdd);
// Compute total number of bits
int totalbits = 0;
for (size_t i=0; i<vector_size; i++) {
totalbits += bits[i];
}
// Compute state variables
MTBDD state_vars = mtbdd_true;
for (int i=0; i<totalbits; i++) {
state_vars = mtbdd_makenode(2*(totalbits-i-1), mtbdd_false, state_vars);
}
mtbdd_protect(&state_vars);
// Report that we begin the actual conversion
if (verbose) printf("Converting to BDD...\n");
// Create BDD file
f = fopen(bdd_filename, "w");
if (f == NULL) Abort("Cannot open file '%s'!\n", bdd_filename);
// Write domain...
int vector_size = 1;
fwrite(&totalbits, sizeof(int), 1, f); // use number of bits as vector size
fwrite(&vector_size, sizeof(int), 1, f); // set each to 1
fwrite(&actionbits, sizeof(int), 1, f);
// Write initial state...
MTBDD new_initial = bdd_from_ldd(initial->mdd, bits_mdd, 0);
assert((size_t)mtbdd_satcount(new_initial, totalbits) == (size_t)lddmc_satcount_cached(initial->mdd));
mtbdd_refs_push(new_initial);
{
size_t a = sylvan_serialize_add(new_initial);
size_t b = sylvan_serialize_add(state_vars);
size_t s = totalbits;
sylvan_serialize_tofile(f);
fwrite(&a, sizeof(size_t), 1, f);
fwrite(&s, sizeof(size_t), 1, f);
fwrite(&b, sizeof(size_t), 1, f);
}
// Custom operation that converts to BDD given number of bits for each level
MTBDD new_states = bdd_from_ldd(states->mdd, bits_mdd, 0);
assert((size_t)mtbdd_satcount(new_states, totalbits) == (size_t)lddmc_satcount_cached(states->mdd));
mtbdd_refs_push(new_states);
// Report size of BDD
if (verbose) {
printf("Initial states: %zu BDD nodes\n", mtbdd_nodecount(new_initial));
printf("Reachable states: %zu BDD nodes\n", mtbdd_nodecount(new_states));
}
// Write number of transitions
fwrite(&next_count, sizeof(int), 1, f);
// Write transitions
for (int i=0; i<next_count; i++) {
// Compute new transition relation
MTBDD new_rel = bdd_from_ldd_rel(next[i]->mdd, bits_mdd, 0, next[i]->meta);
mtbdd_refs_push(new_rel);
// Compute new <variables> for the current transition relation
MTBDD new_vars = meta_to_bdd(next[i]->meta, bits_mdd, 0);
mtbdd_refs_push(new_vars);
if (check_results) {
// Test if the transition is correctly converted
MTBDD test = sylvan_relnext(new_states, new_rel, new_vars);
mtbdd_refs_push(test);
MDD succ = lddmc_relprod(states->mdd, next[i]->mdd, next[i]->meta);
lddmc_refs_push(succ);
MTBDD test2 = bdd_from_ldd(succ, bits_mdd, 0);
if (test != test2) Abort("Conversion error!\n");
mtbdd_refs_pop(1);
lddmc_refs_pop(1);
}
// Report number of nodes
if (verbose) printf("Transition %d: %zu BDD nodes\n", i, mtbdd_nodecount(new_rel));
size_t a = sylvan_serialize_add(new_rel);
size_t b = sylvan_serialize_add(new_vars);
sylvan_serialize_tofile(f);
fwrite(&a, sizeof(size_t), 1, f);
fwrite(&b, sizeof(size_t), 1, f);
}
// Write reachable states
has_reachable = 1;
fwrite(&has_reachable, sizeof(int), 1, f);
{
size_t a = sylvan_serialize_add(new_states);
size_t b = sylvan_serialize_add(state_vars);
size_t s = totalbits;
sylvan_serialize_tofile(f);
fwrite(&a, sizeof(size_t), 1, f);
fwrite(&s, sizeof(size_t), 1, f);
fwrite(&b, sizeof(size_t), 1, f);
}
// Write action labels
fwrite(&action_labels_count, sizeof(int), 1, f);
for (int i=0; i<action_labels_count; i++) {
uint32_t len = strlen(action_labels[i]);
fwrite(&len, sizeof(uint32_t), 1, f);
fwrite(action_labels[i], sizeof(char), len, f);
}
// Close the file
fclose(f);
// Report to the user
printf("Written file %s.\n", bdd_filename);
// Report Sylvan statistics (if SYLVAN_STATS is set)
if (verbose) sylvan_stats_report(stdout);
return 0;
}