You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

529 lines
19 KiB

/* glphbm.c */
/***********************************************************************
* This code is part of GLPK (GNU Linear Programming Kit).
*
* Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
* 2009, 2010, 2011, 2013 Andrew Makhorin, Department for Applied
* Informatics, Moscow Aviation Institute, Moscow, Russia. All rights
* reserved. E-mail: <mao@gnu.org>.
*
* GLPK is free software: you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GLPK is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
* License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GLPK. If not, see <http://www.gnu.org/licenses/>.
***********************************************************************/
#include "env.h"
#include "glphbm.h"
#include "misc.h"
/***********************************************************************
* NAME
*
* hbm_read_mat - read sparse matrix in Harwell-Boeing format
*
* SYNOPSIS
*
* #include "glphbm.h"
* HBM *hbm_read_mat(const char *fname);
*
* DESCRIPTION
*
* The routine hbm_read_mat reads a sparse matrix in the Harwell-Boeing
* format from a text file whose name is the character string fname.
*
* Detailed description of the Harwell-Boeing format recognised by this
* routine is given in the following report:
*
* I.S.Duff, R.G.Grimes, J.G.Lewis. User's Guide for the Harwell-Boeing
* Sparse Matrix Collection (Release I), TR/PA/92/86, October 1992.
*
* RETURNS
*
* If no error occured, the routine hbm_read_mat returns a pointer to
* a data structure containing the matrix. In case of error the routine
* prints an appropriate error message and returns NULL. */
struct dsa
{ /* working area used by routine hbm_read_mat */
const char *fname;
/* name of input text file */
FILE *fp;
/* stream assigned to input text file */
int seqn;
/* card sequential number */
char card[80+1];
/* card image buffer */
int fmt_p;
/* scale factor */
int fmt_k;
/* iterator */
int fmt_f;
/* format code */
int fmt_w;
/* field width */
int fmt_d;
/* number of decimal places after point */
};
/***********************************************************************
* read_card - read next data card
*
* This routine reads the next 80-column card from the input text file
* and stores its image into the character string card. If the card was
* read successfully, the routine returns zero, otherwise non-zero. */
#if 1 /* 11/III-2012 */
static int read_card(struct dsa *dsa)
{ int c, len = 0;
char buf[255+1];
dsa->seqn++;
for (;;)
{ c = fgetc(dsa->fp);
if (c == EOF)
{ if (ferror(dsa->fp))
xprintf("%s:%d: read error\n",
dsa->fname, dsa->seqn);
else
xprintf("%s:%d: unexpected end-of-file\n",
dsa->fname, dsa->seqn);
return 1;
}
else if (c == '\r')
/* nop */;
else if (c == '\n')
break;
else if (iscntrl(c))
{ xprintf("%s:%d: invalid control character\n",
dsa->fname, dsa->seqn, c);
return 1;
}
else
{ if (len == sizeof(buf)-1)
goto err;
buf[len++] = (char)c;
}
}
/* remove trailing spaces */
while (len > 80 && buf[len-1] == ' ')
len--;
buf[len] = '\0';
/* line should not be longer than 80 chars */
if (len > 80)
err: { xerror("%s:%d: card image too long\n",
dsa->fname, dsa->seqn);
return 1;
}
/* padd by spaces to 80-column card image */
strcpy(dsa->card, buf);
memset(&dsa->card[len], ' ', 80 - len);
dsa->card[80] = '\0';
return 0;
}
#endif
/***********************************************************************
* scan_int - scan integer value from the current card
*
* This routine scans an integer value from the current card, where fld
* is the name of the field, pos is the position of the field, width is
* the width of the field, val points to a location to which the scanned
* value should be stored. If the value was scanned successfully, the
* routine returns zero, otherwise non-zero. */
static int scan_int(struct dsa *dsa, char *fld, int pos, int width,
int *val)
{ char str[80+1];
xassert(1 <= width && width <= 80);
memcpy(str, dsa->card + pos, width), str[width] = '\0';
if (str2int(strspx(str), val))
{ xprintf("%s:%d: field '%s' contains invalid value '%s'\n",
dsa->fname, dsa->seqn, fld, str);
return 1;
}
return 0;
}
/***********************************************************************
* parse_fmt - parse Fortran format specification
*
* This routine parses the Fortran format specification represented as
* character string which fmt points to and stores format elements into
* appropriate static locations. Should note that not all valid Fortran
* format specifications may be recognised. If the format specification
* was recognised, the routine returns zero, otherwise non-zero. */
static int parse_fmt(struct dsa *dsa, char *fmt)
{ int k, s, val;
char str[80+1];
/* first character should be left parenthesis */
if (fmt[0] != '(')
fail: { xprintf("hbm_read_mat: format '%s' not recognised\n", fmt);
return 1;
}
k = 1;
/* optional scale factor */
dsa->fmt_p = 0;
if (isdigit((unsigned char)fmt[k]))
{ s = 0;
while (isdigit((unsigned char)fmt[k]))
{ if (s == 80) goto fail;
str[s++] = fmt[k++];
}
str[s] = '\0';
if (str2int(str, &val)) goto fail;
if (toupper((unsigned char)fmt[k]) != 'P') goto iter;
dsa->fmt_p = val, k++;
if (!(0 <= dsa->fmt_p && dsa->fmt_p <= 255)) goto fail;
/* optional comma may follow scale factor */
if (fmt[k] == ',') k++;
}
/* optional iterator */
dsa->fmt_k = 1;
if (isdigit((unsigned char)fmt[k]))
{ s = 0;
while (isdigit((unsigned char)fmt[k]))
{ if (s == 80) goto fail;
str[s++] = fmt[k++];
}
str[s] = '\0';
if (str2int(str, &val)) goto fail;
iter: dsa->fmt_k = val;
if (!(1 <= dsa->fmt_k && dsa->fmt_k <= 255)) goto fail;
}
/* format code */
dsa->fmt_f = toupper((unsigned char)fmt[k++]);
if (!(dsa->fmt_f == 'D' || dsa->fmt_f == 'E' ||
dsa->fmt_f == 'F' || dsa->fmt_f == 'G' ||
dsa->fmt_f == 'I')) goto fail;
/* field width */
if (!isdigit((unsigned char)fmt[k])) goto fail;
s = 0;
while (isdigit((unsigned char)fmt[k]))
{ if (s == 80) goto fail;
str[s++] = fmt[k++];
}
str[s] = '\0';
if (str2int(str, &dsa->fmt_w)) goto fail;
if (!(1 <= dsa->fmt_w && dsa->fmt_w <= 255)) goto fail;
/* optional number of decimal places after point */
dsa->fmt_d = 0;
if (fmt[k] == '.')
{ k++;
if (!isdigit((unsigned char)fmt[k])) goto fail;
s = 0;
while (isdigit((unsigned char)fmt[k]))
{ if (s == 80) goto fail;
str[s++] = fmt[k++];
}
str[s] = '\0';
if (str2int(str, &dsa->fmt_d)) goto fail;
if (!(0 <= dsa->fmt_d && dsa->fmt_d <= 255)) goto fail;
}
/* last character should be right parenthesis */
if (!(fmt[k] == ')' && fmt[k+1] == '\0')) goto fail;
return 0;
}
/***********************************************************************
* read_int_array - read array of integer type
*
* This routine reads an integer array from the input text file, where
* name is array name, fmt is Fortran format specification that controls
* reading, n is number of array elements, val is array of integer type.
* If the array was read successful, the routine returns zero, otherwise
* non-zero. */
static int read_int_array(struct dsa *dsa, char *name, char *fmt,
int n, int val[])
{ int k, pos;
char str[80+1];
if (parse_fmt(dsa, fmt)) return 1;
if (!(dsa->fmt_f == 'I' && dsa->fmt_w <= 80 &&
dsa->fmt_k * dsa->fmt_w <= 80))
{ xprintf(
"%s:%d: can't read array '%s' - invalid format '%s'\n",
dsa->fname, dsa->seqn, name, fmt);
return 1;
}
for (k = 1, pos = INT_MAX; k <= n; k++, pos++)
{ if (pos >= dsa->fmt_k)
{ if (read_card(dsa)) return 1;
pos = 0;
}
memcpy(str, dsa->card + dsa->fmt_w * pos, dsa->fmt_w);
str[dsa->fmt_w] = '\0';
strspx(str);
if (str2int(str, &val[k]))
{ xprintf(
"%s:%d: can't read array '%s' - invalid value '%s'\n",
dsa->fname, dsa->seqn, name, str);
return 1;
}
}
return 0;
}
/***********************************************************************
* read_real_array - read array of real type
*
* This routine reads a real array from the input text file, where name
* is array name, fmt is Fortran format specification that controls
* reading, n is number of array elements, val is array of real type.
* If the array was read successful, the routine returns zero, otherwise
* non-zero. */
static int read_real_array(struct dsa *dsa, char *name, char *fmt,
int n, double val[])
{ int k, pos;
char str[80+1], *ptr;
if (parse_fmt(dsa, fmt)) return 1;
if (!(dsa->fmt_f != 'I' && dsa->fmt_w <= 80 &&
dsa->fmt_k * dsa->fmt_w <= 80))
{ xprintf(
"%s:%d: can't read array '%s' - invalid format '%s'\n",
dsa->fname, dsa->seqn, name, fmt);
return 1;
}
for (k = 1, pos = INT_MAX; k <= n; k++, pos++)
{ if (pos >= dsa->fmt_k)
{ if (read_card(dsa)) return 1;
pos = 0;
}
memcpy(str, dsa->card + dsa->fmt_w * pos, dsa->fmt_w);
str[dsa->fmt_w] = '\0';
strspx(str);
if (strchr(str, '.') == NULL && strcmp(str, "0"))
{ xprintf("%s(%d): can't read array '%s' - value '%s' has no "
"decimal point\n", dsa->fname, dsa->seqn, name, str);
return 1;
}
/* sometimes lower case letters appear */
for (ptr = str; *ptr; ptr++)
*ptr = (char)toupper((unsigned char)*ptr);
ptr = strchr(str, 'D');
if (ptr != NULL) *ptr = 'E';
/* value may appear with decimal exponent but without letters
E or D (for example, -123.456-012), so missing letter should
be inserted */
ptr = strchr(str+1, '+');
if (ptr == NULL) ptr = strchr(str+1, '-');
if (ptr != NULL && *(ptr-1) != 'E')
{ xassert(strlen(str) < 80);
memmove(ptr+1, ptr, strlen(ptr)+1);
*ptr = 'E';
}
if (str2num(str, &val[k]))
{ xprintf(
"%s:%d: can't read array '%s' - invalid value '%s'\n",
dsa->fname, dsa->seqn, name, str);
return 1;
}
}
return 0;
}
HBM *hbm_read_mat(const char *fname)
{ struct dsa _dsa, *dsa = &_dsa;
HBM *hbm = NULL;
dsa->fname = fname;
xprintf("hbm_read_mat: reading matrix from '%s'...\n",
dsa->fname);
dsa->fp = fopen(dsa->fname, "r");
if (dsa->fp == NULL)
{ xprintf("hbm_read_mat: unable to open '%s' - %s\n",
dsa->fname, strerror(errno));
goto fail;
}
dsa->seqn = 0;
hbm = xmalloc(sizeof(HBM));
memset(hbm, 0, sizeof(HBM));
/* read the first heading card */
if (read_card(dsa)) goto fail;
memcpy(hbm->title, dsa->card, 72), hbm->title[72] = '\0';
strtrim(hbm->title);
xprintf("%s\n", hbm->title);
memcpy(hbm->key, dsa->card+72, 8), hbm->key[8] = '\0';
strspx(hbm->key);
xprintf("key = %s\n", hbm->key);
/* read the second heading card */
if (read_card(dsa)) goto fail;
if (scan_int(dsa, "totcrd", 0, 14, &hbm->totcrd)) goto fail;
if (scan_int(dsa, "ptrcrd", 14, 14, &hbm->ptrcrd)) goto fail;
if (scan_int(dsa, "indcrd", 28, 14, &hbm->indcrd)) goto fail;
if (scan_int(dsa, "valcrd", 42, 14, &hbm->valcrd)) goto fail;
if (scan_int(dsa, "rhscrd", 56, 14, &hbm->rhscrd)) goto fail;
xprintf("totcrd = %d; ptrcrd = %d; indcrd = %d; valcrd = %d; rhsc"
"rd = %d\n", hbm->totcrd, hbm->ptrcrd, hbm->indcrd,
hbm->valcrd, hbm->rhscrd);
/* read the third heading card */
if (read_card(dsa)) goto fail;
memcpy(hbm->mxtype, dsa->card, 3), hbm->mxtype[3] = '\0';
if (strchr("RCP", hbm->mxtype[0]) == NULL ||
strchr("SUHZR", hbm->mxtype[1]) == NULL ||
strchr("AE", hbm->mxtype[2]) == NULL)
{ xprintf("%s:%d: matrix type '%s' not recognised\n",
dsa->fname, dsa->seqn, hbm->mxtype);
goto fail;
}
if (scan_int(dsa, "nrow", 14, 14, &hbm->nrow)) goto fail;
if (scan_int(dsa, "ncol", 28, 14, &hbm->ncol)) goto fail;
if (scan_int(dsa, "nnzero", 42, 14, &hbm->nnzero)) goto fail;
if (scan_int(dsa, "neltvl", 56, 14, &hbm->neltvl)) goto fail;
xprintf("mxtype = %s; nrow = %d; ncol = %d; nnzero = %d; neltvl ="
" %d\n", hbm->mxtype, hbm->nrow, hbm->ncol, hbm->nnzero,
hbm->neltvl);
/* read the fourth heading card */
if (read_card(dsa)) goto fail;
memcpy(hbm->ptrfmt, dsa->card, 16), hbm->ptrfmt[16] = '\0';
strspx(hbm->ptrfmt);
memcpy(hbm->indfmt, dsa->card+16, 16), hbm->indfmt[16] = '\0';
strspx(hbm->indfmt);
memcpy(hbm->valfmt, dsa->card+32, 20), hbm->valfmt[20] = '\0';
strspx(hbm->valfmt);
memcpy(hbm->rhsfmt, dsa->card+52, 20), hbm->rhsfmt[20] = '\0';
strspx(hbm->rhsfmt);
xprintf("ptrfmt = %s; indfmt = %s; valfmt = %s; rhsfmt = %s\n",
hbm->ptrfmt, hbm->indfmt, hbm->valfmt, hbm->rhsfmt);
/* read the fifth heading card (optional) */
if (hbm->rhscrd <= 0)
{ strcpy(hbm->rhstyp, "???");
hbm->nrhs = 0;
hbm->nrhsix = 0;
}
else
{ if (read_card(dsa)) goto fail;
memcpy(hbm->rhstyp, dsa->card, 3), hbm->rhstyp[3] = '\0';
if (scan_int(dsa, "nrhs", 14, 14, &hbm->nrhs)) goto fail;
if (scan_int(dsa, "nrhsix", 28, 14, &hbm->nrhsix)) goto fail;
xprintf("rhstyp = '%s'; nrhs = %d; nrhsix = %d\n",
hbm->rhstyp, hbm->nrhs, hbm->nrhsix);
}
/* read matrix structure */
hbm->colptr = xcalloc(1+hbm->ncol+1, sizeof(int));
if (read_int_array(dsa, "colptr", hbm->ptrfmt, hbm->ncol+1,
hbm->colptr)) goto fail;
hbm->rowind = xcalloc(1+hbm->nnzero, sizeof(int));
if (read_int_array(dsa, "rowind", hbm->indfmt, hbm->nnzero,
hbm->rowind)) goto fail;
/* read matrix values */
if (hbm->valcrd <= 0) goto done;
if (hbm->mxtype[2] == 'A')
{ /* assembled matrix */
hbm->values = xcalloc(1+hbm->nnzero, sizeof(double));
if (read_real_array(dsa, "values", hbm->valfmt, hbm->nnzero,
hbm->values)) goto fail;
}
else
{ /* elemental (unassembled) matrix */
hbm->values = xcalloc(1+hbm->neltvl, sizeof(double));
if (read_real_array(dsa, "values", hbm->valfmt, hbm->neltvl,
hbm->values)) goto fail;
}
/* read right-hand sides */
if (hbm->nrhs <= 0) goto done;
if (hbm->rhstyp[0] == 'F')
{ /* dense format */
hbm->nrhsvl = hbm->nrow * hbm->nrhs;
hbm->rhsval = xcalloc(1+hbm->nrhsvl, sizeof(double));
if (read_real_array(dsa, "rhsval", hbm->rhsfmt, hbm->nrhsvl,
hbm->rhsval)) goto fail;
}
else if (hbm->rhstyp[0] == 'M' && hbm->mxtype[2] == 'A')
{ /* sparse format */
/* read pointers */
hbm->rhsptr = xcalloc(1+hbm->nrhs+1, sizeof(int));
if (read_int_array(dsa, "rhsptr", hbm->ptrfmt, hbm->nrhs+1,
hbm->rhsptr)) goto fail;
/* read sparsity pattern */
hbm->rhsind = xcalloc(1+hbm->nrhsix, sizeof(int));
if (read_int_array(dsa, "rhsind", hbm->indfmt, hbm->nrhsix,
hbm->rhsind)) goto fail;
/* read values */
hbm->rhsval = xcalloc(1+hbm->nrhsix, sizeof(double));
if (read_real_array(dsa, "rhsval", hbm->rhsfmt, hbm->nrhsix,
hbm->rhsval)) goto fail;
}
else if (hbm->rhstyp[0] == 'M' && hbm->mxtype[2] == 'E')
{ /* elemental format */
hbm->rhsval = xcalloc(1+hbm->nrhsvl, sizeof(double));
if (read_real_array(dsa, "rhsval", hbm->rhsfmt, hbm->nrhsvl,
hbm->rhsval)) goto fail;
}
else
{ xprintf("%s:%d: right-hand side type '%c' not recognised\n",
dsa->fname, dsa->seqn, hbm->rhstyp[0]);
goto fail;
}
/* read starting guesses */
if (hbm->rhstyp[1] == 'G')
{ hbm->nguess = hbm->nrow * hbm->nrhs;
hbm->sguess = xcalloc(1+hbm->nguess, sizeof(double));
if (read_real_array(dsa, "sguess", hbm->rhsfmt, hbm->nguess,
hbm->sguess)) goto fail;
}
/* read solution vectors */
if (hbm->rhstyp[2] == 'X')
{ hbm->nexact = hbm->nrow * hbm->nrhs;
hbm->xexact = xcalloc(1+hbm->nexact, sizeof(double));
if (read_real_array(dsa, "xexact", hbm->rhsfmt, hbm->nexact,
hbm->xexact)) goto fail;
}
done: /* reading has been completed */
xprintf("hbm_read_mat: %d cards were read\n", dsa->seqn);
fclose(dsa->fp);
return hbm;
fail: /* something wrong in Danish kingdom */
if (hbm != NULL)
{ if (hbm->colptr != NULL) xfree(hbm->colptr);
if (hbm->rowind != NULL) xfree(hbm->rowind);
if (hbm->rhsptr != NULL) xfree(hbm->rhsptr);
if (hbm->rhsind != NULL) xfree(hbm->rhsind);
if (hbm->values != NULL) xfree(hbm->values);
if (hbm->rhsval != NULL) xfree(hbm->rhsval);
if (hbm->sguess != NULL) xfree(hbm->sguess);
if (hbm->xexact != NULL) xfree(hbm->xexact);
xfree(hbm);
}
if (dsa->fp != NULL) fclose(dsa->fp);
return NULL;
}
/***********************************************************************
* NAME
*
* hbm_free_mat - free sparse matrix in Harwell-Boeing format
*
* SYNOPSIS
*
* #include "glphbm.h"
* void hbm_free_mat(HBM *hbm);
*
* DESCRIPTION
*
* The hbm_free_mat routine frees all the memory allocated to the data
* structure containing a sparse matrix in the Harwell-Boeing format. */
void hbm_free_mat(HBM *hbm)
{ if (hbm->colptr != NULL) xfree(hbm->colptr);
if (hbm->rowind != NULL) xfree(hbm->rowind);
if (hbm->rhsptr != NULL) xfree(hbm->rhsptr);
if (hbm->rhsind != NULL) xfree(hbm->rhsind);
if (hbm->values != NULL) xfree(hbm->values);
if (hbm->rhsval != NULL) xfree(hbm->rhsval);
if (hbm->sguess != NULL) xfree(hbm->sguess);
if (hbm->xexact != NULL) xfree(hbm->xexact);
xfree(hbm);
return;
}
/* eof */