You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

1579 lines
52 KiB

/* glpapi01.c (problem creating and modifying routines) */
/***********************************************************************
* This code is part of GLPK (GNU Linear Programming Kit).
*
* Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
* 2009, 2010, 2011, 2013 Andrew Makhorin, Department for Applied
* Informatics, Moscow Aviation Institute, Moscow, Russia. All rights
* reserved. E-mail: <mao@gnu.org>.
*
* GLPK is free software: you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GLPK is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
* License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GLPK. If not, see <http://www.gnu.org/licenses/>.
***********************************************************************/
#include "env.h"
#include "glpios.h"
/* CAUTION: DO NOT CHANGE THE LIMITS BELOW */
#define M_MAX 100000000 /* = 100*10^6 */
/* maximal number of rows in the problem object */
#define N_MAX 100000000 /* = 100*10^6 */
/* maximal number of columns in the problem object */
#define NNZ_MAX 500000000 /* = 500*10^6 */
/* maximal number of constraint coefficients in the problem object */
/***********************************************************************
* NAME
*
* glp_create_prob - create problem object
*
* SYNOPSIS
*
* glp_prob *glp_create_prob(void);
*
* DESCRIPTION
*
* The routine glp_create_prob creates a new problem object, which is
* initially "empty", i.e. has no rows and columns.
*
* RETURNS
*
* The routine returns a pointer to the object created, which should be
* used in any subsequent operations on this object. */
static void create_prob(glp_prob *lp)
{ lp->magic = GLP_PROB_MAGIC;
lp->pool = dmp_create_pool();
#if 0 /* 08/III-2014 */
#if 0 /* 17/XI-2009 */
lp->cps = xmalloc(sizeof(struct LPXCPS));
lpx_reset_parms(lp);
#else
lp->parms = NULL;
#endif
#endif
lp->tree = NULL;
#if 0
lp->lwa = 0;
lp->cwa = NULL;
#endif
/* LP/MIP data */
lp->name = NULL;
lp->obj = NULL;
lp->dir = GLP_MIN;
lp->c0 = 0.0;
lp->m_max = 100;
lp->n_max = 200;
lp->m = lp->n = 0;
lp->nnz = 0;
lp->row = xcalloc(1+lp->m_max, sizeof(GLPROW *));
lp->col = xcalloc(1+lp->n_max, sizeof(GLPCOL *));
lp->r_tree = lp->c_tree = NULL;
/* basis factorization */
lp->valid = 0;
lp->head = xcalloc(1+lp->m_max, sizeof(int));
#if 0 /* 08/III-2014 */
lp->bfcp = NULL;
#endif
lp->bfd = NULL;
/* basic solution (LP) */
lp->pbs_stat = lp->dbs_stat = GLP_UNDEF;
lp->obj_val = 0.0;
lp->it_cnt = 0;
lp->some = 0;
/* interior-point solution (LP) */
lp->ipt_stat = GLP_UNDEF;
lp->ipt_obj = 0.0;
/* integer solution (MIP) */
lp->mip_stat = GLP_UNDEF;
lp->mip_obj = 0.0;
return;
}
glp_prob *glp_create_prob(void)
{ glp_prob *lp;
lp = xmalloc(sizeof(glp_prob));
create_prob(lp);
return lp;
}
/***********************************************************************
* NAME
*
* glp_set_prob_name - assign (change) problem name
*
* SYNOPSIS
*
* void glp_set_prob_name(glp_prob *lp, const char *name);
*
* DESCRIPTION
*
* The routine glp_set_prob_name assigns a given symbolic name (1 up to
* 255 characters) to the specified problem object.
*
* If the parameter name is NULL or empty string, the routine erases an
* existing symbolic name of the problem object. */
void glp_set_prob_name(glp_prob *lp, const char *name)
{ glp_tree *tree = lp->tree;
if (tree != NULL && tree->reason != 0)
xerror("glp_set_prob_name: operation not allowed\n");
if (lp->name != NULL)
{ dmp_free_atom(lp->pool, lp->name, strlen(lp->name)+1);
lp->name = NULL;
}
if (!(name == NULL || name[0] == '\0'))
{ int k;
for (k = 0; name[k] != '\0'; k++)
{ if (k == 256)
xerror("glp_set_prob_name: problem name too long\n");
if (iscntrl((unsigned char)name[k]))
xerror("glp_set_prob_name: problem name contains invalid"
" character(s)\n");
}
lp->name = dmp_get_atom(lp->pool, strlen(name)+1);
strcpy(lp->name, name);
}
return;
}
/***********************************************************************
* NAME
*
* glp_set_obj_name - assign (change) objective function name
*
* SYNOPSIS
*
* void glp_set_obj_name(glp_prob *lp, const char *name);
*
* DESCRIPTION
*
* The routine glp_set_obj_name assigns a given symbolic name (1 up to
* 255 characters) to the objective function of the specified problem
* object.
*
* If the parameter name is NULL or empty string, the routine erases an
* existing name of the objective function. */
void glp_set_obj_name(glp_prob *lp, const char *name)
{ glp_tree *tree = lp->tree;
if (tree != NULL && tree->reason != 0)
xerror("glp_set_obj_name: operation not allowed\n");
if (lp->obj != NULL)
{ dmp_free_atom(lp->pool, lp->obj, strlen(lp->obj)+1);
lp->obj = NULL;
}
if (!(name == NULL || name[0] == '\0'))
{ int k;
for (k = 0; name[k] != '\0'; k++)
{ if (k == 256)
xerror("glp_set_obj_name: objective name too long\n");
if (iscntrl((unsigned char)name[k]))
xerror("glp_set_obj_name: objective name contains invali"
"d character(s)\n");
}
lp->obj = dmp_get_atom(lp->pool, strlen(name)+1);
strcpy(lp->obj, name);
}
return;
}
/***********************************************************************
* NAME
*
* glp_set_obj_dir - set (change) optimization direction flag
*
* SYNOPSIS
*
* void glp_set_obj_dir(glp_prob *lp, int dir);
*
* DESCRIPTION
*
* The routine glp_set_obj_dir sets (changes) optimization direction
* flag (i.e. "sense" of the objective function) as specified by the
* parameter dir:
*
* GLP_MIN - minimization;
* GLP_MAX - maximization. */
void glp_set_obj_dir(glp_prob *lp, int dir)
{ glp_tree *tree = lp->tree;
if (tree != NULL && tree->reason != 0)
xerror("glp_set_obj_dir: operation not allowed\n");
if (!(dir == GLP_MIN || dir == GLP_MAX))
xerror("glp_set_obj_dir: dir = %d; invalid direction flag\n",
dir);
lp->dir = dir;
return;
}
/***********************************************************************
* NAME
*
* glp_add_rows - add new rows to problem object
*
* SYNOPSIS
*
* int glp_add_rows(glp_prob *lp, int nrs);
*
* DESCRIPTION
*
* The routine glp_add_rows adds nrs rows (constraints) to the specified
* problem object. New rows are always added to the end of the row list,
* so the ordinal numbers of existing rows remain unchanged.
*
* Being added each new row is initially free (unbounded) and has empty
* list of the constraint coefficients.
*
* RETURNS
*
* The routine glp_add_rows returns the ordinal number of the first new
* row added to the problem object. */
int glp_add_rows(glp_prob *lp, int nrs)
{ glp_tree *tree = lp->tree;
GLPROW *row;
int m_new, i;
/* determine new number of rows */
if (nrs < 1)
xerror("glp_add_rows: nrs = %d; invalid number of rows\n",
nrs);
if (nrs > M_MAX - lp->m)
xerror("glp_add_rows: nrs = %d; too many rows\n", nrs);
m_new = lp->m + nrs;
/* increase the room, if necessary */
if (lp->m_max < m_new)
{ GLPROW **save = lp->row;
while (lp->m_max < m_new)
{ lp->m_max += lp->m_max;
xassert(lp->m_max > 0);
}
lp->row = xcalloc(1+lp->m_max, sizeof(GLPROW *));
memcpy(&lp->row[1], &save[1], lp->m * sizeof(GLPROW *));
xfree(save);
/* do not forget about the basis header */
xfree(lp->head);
lp->head = xcalloc(1+lp->m_max, sizeof(int));
}
/* add new rows to the end of the row list */
for (i = lp->m+1; i <= m_new; i++)
{ /* create row descriptor */
lp->row[i] = row = dmp_get_atom(lp->pool, sizeof(GLPROW));
row->i = i;
row->name = NULL;
row->node = NULL;
#if 1 /* 20/IX-2008 */
row->level = 0;
row->origin = 0;
row->klass = 0;
if (tree != NULL)
{ switch (tree->reason)
{ case 0:
break;
case GLP_IROWGEN:
xassert(tree->curr != NULL);
row->level = tree->curr->level;
row->origin = GLP_RF_LAZY;
break;
case GLP_ICUTGEN:
xassert(tree->curr != NULL);
row->level = tree->curr->level;
row->origin = GLP_RF_CUT;
break;
default:
xassert(tree != tree);
}
}
#endif
row->type = GLP_FR;
row->lb = row->ub = 0.0;
row->ptr = NULL;
row->rii = 1.0;
row->stat = GLP_BS;
#if 0
row->bind = -1;
#else
row->bind = 0;
#endif
row->prim = row->dual = 0.0;
row->pval = row->dval = 0.0;
row->mipx = 0.0;
}
/* set new number of rows */
lp->m = m_new;
/* invalidate the basis factorization */
lp->valid = 0;
#if 1
if (tree != NULL && tree->reason != 0) tree->reopt = 1;
#endif
/* return the ordinal number of the first row added */
return m_new - nrs + 1;
}
/***********************************************************************
* NAME
*
* glp_add_cols - add new columns to problem object
*
* SYNOPSIS
*
* int glp_add_cols(glp_prob *lp, int ncs);
*
* DESCRIPTION
*
* The routine glp_add_cols adds ncs columns (structural variables) to
* the specified problem object. New columns are always added to the end
* of the column list, so the ordinal numbers of existing columns remain
* unchanged.
*
* Being added each new column is initially fixed at zero and has empty
* list of the constraint coefficients.
*
* RETURNS
*
* The routine glp_add_cols returns the ordinal number of the first new
* column added to the problem object. */
int glp_add_cols(glp_prob *lp, int ncs)
{ glp_tree *tree = lp->tree;
GLPCOL *col;
int n_new, j;
if (tree != NULL && tree->reason != 0)
xerror("glp_add_cols: operation not allowed\n");
/* determine new number of columns */
if (ncs < 1)
xerror("glp_add_cols: ncs = %d; invalid number of columns\n",
ncs);
if (ncs > N_MAX - lp->n)
xerror("glp_add_cols: ncs = %d; too many columns\n", ncs);
n_new = lp->n + ncs;
/* increase the room, if necessary */
if (lp->n_max < n_new)
{ GLPCOL **save = lp->col;
while (lp->n_max < n_new)
{ lp->n_max += lp->n_max;
xassert(lp->n_max > 0);
}
lp->col = xcalloc(1+lp->n_max, sizeof(GLPCOL *));
memcpy(&lp->col[1], &save[1], lp->n * sizeof(GLPCOL *));
xfree(save);
}
/* add new columns to the end of the column list */
for (j = lp->n+1; j <= n_new; j++)
{ /* create column descriptor */
lp->col[j] = col = dmp_get_atom(lp->pool, sizeof(GLPCOL));
col->j = j;
col->name = NULL;
col->node = NULL;
col->kind = GLP_CV;
col->type = GLP_FX;
col->lb = col->ub = 0.0;
col->coef = 0.0;
col->ptr = NULL;
col->sjj = 1.0;
col->stat = GLP_NS;
#if 0
col->bind = -1;
#else
col->bind = 0; /* the basis may remain valid */
#endif
col->prim = col->dual = 0.0;
col->pval = col->dval = 0.0;
col->mipx = 0.0;
}
/* set new number of columns */
lp->n = n_new;
/* return the ordinal number of the first column added */
return n_new - ncs + 1;
}
/***********************************************************************
* NAME
*
* glp_set_row_name - assign (change) row name
*
* SYNOPSIS
*
* void glp_set_row_name(glp_prob *lp, int i, const char *name);
*
* DESCRIPTION
*
* The routine glp_set_row_name assigns a given symbolic name (1 up to
* 255 characters) to i-th row (auxiliary variable) of the specified
* problem object.
*
* If the parameter name is NULL or empty string, the routine erases an
* existing name of i-th row. */
void glp_set_row_name(glp_prob *lp, int i, const char *name)
{ glp_tree *tree = lp->tree;
GLPROW *row;
if (!(1 <= i && i <= lp->m))
xerror("glp_set_row_name: i = %d; row number out of range\n",
i);
row = lp->row[i];
if (tree != NULL && tree->reason != 0)
{ xassert(tree->curr != NULL);
xassert(row->level == tree->curr->level);
}
if (row->name != NULL)
{ if (row->node != NULL)
{ xassert(lp->r_tree != NULL);
avl_delete_node(lp->r_tree, row->node);
row->node = NULL;
}
dmp_free_atom(lp->pool, row->name, strlen(row->name)+1);
row->name = NULL;
}
if (!(name == NULL || name[0] == '\0'))
{ int k;
for (k = 0; name[k] != '\0'; k++)
{ if (k == 256)
xerror("glp_set_row_name: i = %d; row name too long\n",
i);
if (iscntrl((unsigned char)name[k]))
xerror("glp_set_row_name: i = %d: row name contains inva"
"lid character(s)\n", i);
}
row->name = dmp_get_atom(lp->pool, strlen(name)+1);
strcpy(row->name, name);
if (lp->r_tree != NULL)
{ xassert(row->node == NULL);
row->node = avl_insert_node(lp->r_tree, row->name);
avl_set_node_link(row->node, row);
}
}
return;
}
/***********************************************************************
* NAME
*
* glp_set_col_name - assign (change) column name
*
* SYNOPSIS
*
* void glp_set_col_name(glp_prob *lp, int j, const char *name);
*
* DESCRIPTION
*
* The routine glp_set_col_name assigns a given symbolic name (1 up to
* 255 characters) to j-th column (structural variable) of the specified
* problem object.
*
* If the parameter name is NULL or empty string, the routine erases an
* existing name of j-th column. */
void glp_set_col_name(glp_prob *lp, int j, const char *name)
{ glp_tree *tree = lp->tree;
GLPCOL *col;
if (tree != NULL && tree->reason != 0)
xerror("glp_set_col_name: operation not allowed\n");
if (!(1 <= j && j <= lp->n))
xerror("glp_set_col_name: j = %d; column number out of range\n"
, j);
col = lp->col[j];
if (col->name != NULL)
{ if (col->node != NULL)
{ xassert(lp->c_tree != NULL);
avl_delete_node(lp->c_tree, col->node);
col->node = NULL;
}
dmp_free_atom(lp->pool, col->name, strlen(col->name)+1);
col->name = NULL;
}
if (!(name == NULL || name[0] == '\0'))
{ int k;
for (k = 0; name[k] != '\0'; k++)
{ if (k == 256)
xerror("glp_set_col_name: j = %d; column name too long\n"
, j);
if (iscntrl((unsigned char)name[k]))
xerror("glp_set_col_name: j = %d: column name contains i"
"nvalid character(s)\n", j);
}
col->name = dmp_get_atom(lp->pool, strlen(name)+1);
strcpy(col->name, name);
if (lp->c_tree != NULL && col->name != NULL)
{ xassert(col->node == NULL);
col->node = avl_insert_node(lp->c_tree, col->name);
avl_set_node_link(col->node, col);
}
}
return;
}
/***********************************************************************
* NAME
*
* glp_set_row_bnds - set (change) row bounds
*
* SYNOPSIS
*
* void glp_set_row_bnds(glp_prob *lp, int i, int type, double lb,
* double ub);
*
* DESCRIPTION
*
* The routine glp_set_row_bnds sets (changes) the type and bounds of
* i-th row (auxiliary variable) of the specified problem object.
*
* Parameters type, lb, and ub specify the type, lower bound, and upper
* bound, respectively, as follows:
*
* Type Bounds Comments
* ------------------------------------------------------
* GLP_FR -inf < x < +inf Free variable
* GLP_LO lb <= x < +inf Variable with lower bound
* GLP_UP -inf < x <= ub Variable with upper bound
* GLP_DB lb <= x <= ub Double-bounded variable
* GLP_FX x = lb Fixed variable
*
* where x is the auxiliary variable associated with i-th row.
*
* If the row has no lower bound, the parameter lb is ignored. If the
* row has no upper bound, the parameter ub is ignored. If the row is
* an equality constraint (i.e. the corresponding auxiliary variable is
* of fixed type), only the parameter lb is used while the parameter ub
* is ignored. */
void glp_set_row_bnds(glp_prob *lp, int i, int type, double lb,
double ub)
{ GLPROW *row;
if (!(1 <= i && i <= lp->m))
xerror("glp_set_row_bnds: i = %d; row number out of range\n",
i);
row = lp->row[i];
row->type = type;
switch (type)
{ case GLP_FR:
row->lb = row->ub = 0.0;
if (row->stat != GLP_BS) row->stat = GLP_NF;
break;
case GLP_LO:
row->lb = lb, row->ub = 0.0;
if (row->stat != GLP_BS) row->stat = GLP_NL;
break;
case GLP_UP:
row->lb = 0.0, row->ub = ub;
if (row->stat != GLP_BS) row->stat = GLP_NU;
break;
case GLP_DB:
row->lb = lb, row->ub = ub;
if (!(row->stat == GLP_BS ||
row->stat == GLP_NL || row->stat == GLP_NU))
row->stat = (fabs(lb) <= fabs(ub) ? GLP_NL : GLP_NU);
break;
case GLP_FX:
row->lb = row->ub = lb;
if (row->stat != GLP_BS) row->stat = GLP_NS;
break;
default:
xerror("glp_set_row_bnds: i = %d; type = %d; invalid row ty"
"pe\n", i, type);
}
return;
}
/***********************************************************************
* NAME
*
* glp_set_col_bnds - set (change) column bounds
*
* SYNOPSIS
*
* void glp_set_col_bnds(glp_prob *lp, int j, int type, double lb,
* double ub);
*
* DESCRIPTION
*
* The routine glp_set_col_bnds sets (changes) the type and bounds of
* j-th column (structural variable) of the specified problem object.
*
* Parameters type, lb, and ub specify the type, lower bound, and upper
* bound, respectively, as follows:
*
* Type Bounds Comments
* ------------------------------------------------------
* GLP_FR -inf < x < +inf Free variable
* GLP_LO lb <= x < +inf Variable with lower bound
* GLP_UP -inf < x <= ub Variable with upper bound
* GLP_DB lb <= x <= ub Double-bounded variable
* GLP_FX x = lb Fixed variable
*
* where x is the structural variable associated with j-th column.
*
* If the column has no lower bound, the parameter lb is ignored. If the
* column has no upper bound, the parameter ub is ignored. If the column
* is of fixed type, only the parameter lb is used while the parameter
* ub is ignored. */
void glp_set_col_bnds(glp_prob *lp, int j, int type, double lb,
double ub)
{ GLPCOL *col;
if (!(1 <= j && j <= lp->n))
xerror("glp_set_col_bnds: j = %d; column number out of range\n"
, j);
col = lp->col[j];
col->type = type;
switch (type)
{ case GLP_FR:
col->lb = col->ub = 0.0;
if (col->stat != GLP_BS) col->stat = GLP_NF;
break;
case GLP_LO:
col->lb = lb, col->ub = 0.0;
if (col->stat != GLP_BS) col->stat = GLP_NL;
break;
case GLP_UP:
col->lb = 0.0, col->ub = ub;
if (col->stat != GLP_BS) col->stat = GLP_NU;
break;
case GLP_DB:
col->lb = lb, col->ub = ub;
if (!(col->stat == GLP_BS ||
col->stat == GLP_NL || col->stat == GLP_NU))
col->stat = (fabs(lb) <= fabs(ub) ? GLP_NL : GLP_NU);
break;
case GLP_FX:
col->lb = col->ub = lb;
if (col->stat != GLP_BS) col->stat = GLP_NS;
break;
default:
xerror("glp_set_col_bnds: j = %d; type = %d; invalid column"
" type\n", j, type);
}
return;
}
/***********************************************************************
* NAME
*
* glp_set_obj_coef - set (change) obj. coefficient or constant term
*
* SYNOPSIS
*
* void glp_set_obj_coef(glp_prob *lp, int j, double coef);
*
* DESCRIPTION
*
* The routine glp_set_obj_coef sets (changes) objective coefficient at
* j-th column (structural variable) of the specified problem object.
*
* If the parameter j is 0, the routine sets (changes) the constant term
* ("shift") of the objective function. */
void glp_set_obj_coef(glp_prob *lp, int j, double coef)
{ glp_tree *tree = lp->tree;
if (tree != NULL && tree->reason != 0)
xerror("glp_set_obj_coef: operation not allowed\n");
if (!(0 <= j && j <= lp->n))
xerror("glp_set_obj_coef: j = %d; column number out of range\n"
, j);
if (j == 0)
lp->c0 = coef;
else
lp->col[j]->coef = coef;
return;
}
/***********************************************************************
* NAME
*
* glp_set_mat_row - set (replace) row of the constraint matrix
*
* SYNOPSIS
*
* void glp_set_mat_row(glp_prob *lp, int i, int len, const int ind[],
* const double val[]);
*
* DESCRIPTION
*
* The routine glp_set_mat_row stores (replaces) the contents of i-th
* row of the constraint matrix of the specified problem object.
*
* Column indices and numeric values of new row elements must be placed
* in locations ind[1], ..., ind[len] and val[1], ..., val[len], where
* 0 <= len <= n is the new length of i-th row, n is the current number
* of columns in the problem object. Elements with identical column
* indices are not allowed. Zero elements are allowed, but they are not
* stored in the constraint matrix.
*
* If the parameter len is zero, the parameters ind and/or val can be
* specified as NULL. */
void glp_set_mat_row(glp_prob *lp, int i, int len, const int ind[],
const double val[])
{ glp_tree *tree = lp->tree;
GLPROW *row;
GLPCOL *col;
GLPAIJ *aij, *next;
int j, k;
/* obtain pointer to i-th row */
if (!(1 <= i && i <= lp->m))
xerror("glp_set_mat_row: i = %d; row number out of range\n",
i);
row = lp->row[i];
if (tree != NULL && tree->reason != 0)
{ xassert(tree->curr != NULL);
xassert(row->level == tree->curr->level);
}
/* remove all existing elements from i-th row */
while (row->ptr != NULL)
{ /* take next element in the row */
aij = row->ptr;
/* remove the element from the row list */
row->ptr = aij->r_next;
/* obtain pointer to corresponding column */
col = aij->col;
/* remove the element from the column list */
if (aij->c_prev == NULL)
col->ptr = aij->c_next;
else
aij->c_prev->c_next = aij->c_next;
if (aij->c_next == NULL)
;
else
aij->c_next->c_prev = aij->c_prev;
/* return the element to the memory pool */
dmp_free_atom(lp->pool, aij, sizeof(GLPAIJ)), lp->nnz--;
/* if the corresponding column is basic, invalidate the basis
factorization */
if (col->stat == GLP_BS) lp->valid = 0;
}
/* store new contents of i-th row */
if (!(0 <= len && len <= lp->n))
xerror("glp_set_mat_row: i = %d; len = %d; invalid row length "
"\n", i, len);
if (len > NNZ_MAX - lp->nnz)
xerror("glp_set_mat_row: i = %d; len = %d; too many constraint"
" coefficients\n", i, len);
for (k = 1; k <= len; k++)
{ /* take number j of corresponding column */
j = ind[k];
/* obtain pointer to j-th column */
if (!(1 <= j && j <= lp->n))
xerror("glp_set_mat_row: i = %d; ind[%d] = %d; column index"
" out of range\n", i, k, j);
col = lp->col[j];
/* if there is element with the same column index, it can only
be found in the beginning of j-th column list */
if (col->ptr != NULL && col->ptr->row->i == i)
xerror("glp_set_mat_row: i = %d; ind[%d] = %d; duplicate co"
"lumn indices not allowed\n", i, k, j);
/* create new element */
aij = dmp_get_atom(lp->pool, sizeof(GLPAIJ)), lp->nnz++;
aij->row = row;
aij->col = col;
aij->val = val[k];
/* add the new element to the beginning of i-th row and j-th
column lists */
aij->r_prev = NULL;
aij->r_next = row->ptr;
aij->c_prev = NULL;
aij->c_next = col->ptr;
if (aij->r_next != NULL) aij->r_next->r_prev = aij;
if (aij->c_next != NULL) aij->c_next->c_prev = aij;
row->ptr = col->ptr = aij;
/* if the corresponding column is basic, invalidate the basis
factorization */
if (col->stat == GLP_BS && aij->val != 0.0) lp->valid = 0;
}
/* remove zero elements from i-th row */
for (aij = row->ptr; aij != NULL; aij = next)
{ next = aij->r_next;
if (aij->val == 0.0)
{ /* remove the element from the row list */
if (aij->r_prev == NULL)
row->ptr = next;
else
aij->r_prev->r_next = next;
if (next == NULL)
;
else
next->r_prev = aij->r_prev;
/* remove the element from the column list */
xassert(aij->c_prev == NULL);
aij->col->ptr = aij->c_next;
if (aij->c_next != NULL) aij->c_next->c_prev = NULL;
/* return the element to the memory pool */
dmp_free_atom(lp->pool, aij, sizeof(GLPAIJ)), lp->nnz--;
}
}
return;
}
/***********************************************************************
* NAME
*
* glp_set_mat_col - set (replace) column of the constraint matrix
*
* SYNOPSIS
*
* void glp_set_mat_col(glp_prob *lp, int j, int len, const int ind[],
* const double val[]);
*
* DESCRIPTION
*
* The routine glp_set_mat_col stores (replaces) the contents of j-th
* column of the constraint matrix of the specified problem object.
*
* Row indices and numeric values of new column elements must be placed
* in locations ind[1], ..., ind[len] and val[1], ..., val[len], where
* 0 <= len <= m is the new length of j-th column, m is the current
* number of rows in the problem object. Elements with identical column
* indices are not allowed. Zero elements are allowed, but they are not
* stored in the constraint matrix.
*
* If the parameter len is zero, the parameters ind and/or val can be
* specified as NULL. */
void glp_set_mat_col(glp_prob *lp, int j, int len, const int ind[],
const double val[])
{ glp_tree *tree = lp->tree;
GLPROW *row;
GLPCOL *col;
GLPAIJ *aij, *next;
int i, k;
if (tree != NULL && tree->reason != 0)
xerror("glp_set_mat_col: operation not allowed\n");
/* obtain pointer to j-th column */
if (!(1 <= j && j <= lp->n))
xerror("glp_set_mat_col: j = %d; column number out of range\n",
j);
col = lp->col[j];
/* remove all existing elements from j-th column */
while (col->ptr != NULL)
{ /* take next element in the column */
aij = col->ptr;
/* remove the element from the column list */
col->ptr = aij->c_next;
/* obtain pointer to corresponding row */
row = aij->row;
/* remove the element from the row list */
if (aij->r_prev == NULL)
row->ptr = aij->r_next;
else
aij->r_prev->r_next = aij->r_next;
if (aij->r_next == NULL)
;
else
aij->r_next->r_prev = aij->r_prev;
/* return the element to the memory pool */
dmp_free_atom(lp->pool, aij, sizeof(GLPAIJ)), lp->nnz--;
}
/* store new contents of j-th column */
if (!(0 <= len && len <= lp->m))
xerror("glp_set_mat_col: j = %d; len = %d; invalid column leng"
"th\n", j, len);
if (len > NNZ_MAX - lp->nnz)
xerror("glp_set_mat_col: j = %d; len = %d; too many constraint"
" coefficients\n", j, len);
for (k = 1; k <= len; k++)
{ /* take number i of corresponding row */
i = ind[k];
/* obtain pointer to i-th row */
if (!(1 <= i && i <= lp->m))
xerror("glp_set_mat_col: j = %d; ind[%d] = %d; row index ou"
"t of range\n", j, k, i);
row = lp->row[i];
/* if there is element with the same row index, it can only be
found in the beginning of i-th row list */
if (row->ptr != NULL && row->ptr->col->j == j)
xerror("glp_set_mat_col: j = %d; ind[%d] = %d; duplicate ro"
"w indices not allowed\n", j, k, i);
/* create new element */
aij = dmp_get_atom(lp->pool, sizeof(GLPAIJ)), lp->nnz++;
aij->row = row;
aij->col = col;
aij->val = val[k];
/* add the new element to the beginning of i-th row and j-th
column lists */
aij->r_prev = NULL;
aij->r_next = row->ptr;
aij->c_prev = NULL;
aij->c_next = col->ptr;
if (aij->r_next != NULL) aij->r_next->r_prev = aij;
if (aij->c_next != NULL) aij->c_next->c_prev = aij;
row->ptr = col->ptr = aij;
}
/* remove zero elements from j-th column */
for (aij = col->ptr; aij != NULL; aij = next)
{ next = aij->c_next;
if (aij->val == 0.0)
{ /* remove the element from the row list */
xassert(aij->r_prev == NULL);
aij->row->ptr = aij->r_next;
if (aij->r_next != NULL) aij->r_next->r_prev = NULL;
/* remove the element from the column list */
if (aij->c_prev == NULL)
col->ptr = next;
else
aij->c_prev->c_next = next;
if (next == NULL)
;
else
next->c_prev = aij->c_prev;
/* return the element to the memory pool */
dmp_free_atom(lp->pool, aij, sizeof(GLPAIJ)), lp->nnz--;
}
}
/* if j-th column is basic, invalidate the basis factorization */
if (col->stat == GLP_BS) lp->valid = 0;
return;
}
/***********************************************************************
* NAME
*
* glp_load_matrix - load (replace) the whole constraint matrix
*
* SYNOPSIS
*
* void glp_load_matrix(glp_prob *lp, int ne, const int ia[],
* const int ja[], const double ar[]);
*
* DESCRIPTION
*
* The routine glp_load_matrix loads the constraint matrix passed in
* the arrays ia, ja, and ar into the specified problem object. Before
* loading the current contents of the constraint matrix is destroyed.
*
* Constraint coefficients (elements of the constraint matrix) must be
* specified as triplets (ia[k], ja[k], ar[k]) for k = 1, ..., ne,
* where ia[k] is the row index, ja[k] is the column index, ar[k] is a
* numeric value of corresponding constraint coefficient. The parameter
* ne specifies the total number of (non-zero) elements in the matrix
* to be loaded. Coefficients with identical indices are not allowed.
* Zero coefficients are allowed, however, they are not stored in the
* constraint matrix.
*
* If the parameter ne is zero, the parameters ia, ja, and ar can be
* specified as NULL. */
void glp_load_matrix(glp_prob *lp, int ne, const int ia[],
const int ja[], const double ar[])
{ glp_tree *tree = lp->tree;
GLPROW *row;
GLPCOL *col;
GLPAIJ *aij, *next;
int i, j, k;
if (tree != NULL && tree->reason != 0)
xerror("glp_load_matrix: operation not allowed\n");
/* clear the constraint matrix */
for (i = 1; i <= lp->m; i++)
{ row = lp->row[i];
while (row->ptr != NULL)
{ aij = row->ptr;
row->ptr = aij->r_next;
dmp_free_atom(lp->pool, aij, sizeof(GLPAIJ)), lp->nnz--;
}
}
xassert(lp->nnz == 0);
for (j = 1; j <= lp->n; j++) lp->col[j]->ptr = NULL;
/* load the new contents of the constraint matrix and build its
row lists */
if (ne < 0)
xerror("glp_load_matrix: ne = %d; invalid number of constraint"
" coefficients\n", ne);
if (ne > NNZ_MAX)
xerror("glp_load_matrix: ne = %d; too many constraint coeffici"
"ents\n", ne);
for (k = 1; k <= ne; k++)
{ /* take indices of new element */
i = ia[k], j = ja[k];
/* obtain pointer to i-th row */
if (!(1 <= i && i <= lp->m))
xerror("glp_load_matrix: ia[%d] = %d; row index out of rang"
"e\n", k, i);
row = lp->row[i];
/* obtain pointer to j-th column */
if (!(1 <= j && j <= lp->n))
xerror("glp_load_matrix: ja[%d] = %d; column index out of r"
"ange\n", k, j);
col = lp->col[j];
/* create new element */
aij = dmp_get_atom(lp->pool, sizeof(GLPAIJ)), lp->nnz++;
aij->row = row;
aij->col = col;
aij->val = ar[k];
/* add the new element to the beginning of i-th row list */
aij->r_prev = NULL;
aij->r_next = row->ptr;
if (aij->r_next != NULL) aij->r_next->r_prev = aij;
row->ptr = aij;
}
xassert(lp->nnz == ne);
/* build column lists of the constraint matrix and check elements
with identical indices */
for (i = 1; i <= lp->m; i++)
{ for (aij = lp->row[i]->ptr; aij != NULL; aij = aij->r_next)
{ /* obtain pointer to corresponding column */
col = aij->col;
/* if there is element with identical indices, it can only
be found in the beginning of j-th column list */
if (col->ptr != NULL && col->ptr->row->i == i)
{ for (k = 1; k <= ne; k++)
if (ia[k] == i && ja[k] == col->j) break;
xerror("glp_load_mat: ia[%d] = %d; ja[%d] = %d; duplicat"
"e indices not allowed\n", k, i, k, col->j);
}
/* add the element to the beginning of j-th column list */
aij->c_prev = NULL;
aij->c_next = col->ptr;
if (aij->c_next != NULL) aij->c_next->c_prev = aij;
col->ptr = aij;
}
}
/* remove zero elements from the constraint matrix */
for (i = 1; i <= lp->m; i++)
{ row = lp->row[i];
for (aij = row->ptr; aij != NULL; aij = next)
{ next = aij->r_next;
if (aij->val == 0.0)
{ /* remove the element from the row list */
if (aij->r_prev == NULL)
row->ptr = next;
else
aij->r_prev->r_next = next;
if (next == NULL)
;
else
next->r_prev = aij->r_prev;
/* remove the element from the column list */
if (aij->c_prev == NULL)
aij->col->ptr = aij->c_next;
else
aij->c_prev->c_next = aij->c_next;
if (aij->c_next == NULL)
;
else
aij->c_next->c_prev = aij->c_prev;
/* return the element to the memory pool */
dmp_free_atom(lp->pool, aij, sizeof(GLPAIJ)), lp->nnz--;
}
}
}
/* invalidate the basis factorization */
lp->valid = 0;
return;
}
/***********************************************************************
* NAME
*
* glp_check_dup - check for duplicate elements in sparse matrix
*
* SYNOPSIS
*
* int glp_check_dup(int m, int n, int ne, const int ia[],
* const int ja[]);
*
* DESCRIPTION
*
* The routine glp_check_dup checks for duplicate elements (that is,
* elements with identical indices) in a sparse matrix specified in the
* coordinate format.
*
* The parameters m and n specifies, respectively, the number of rows
* and columns in the matrix, m >= 0, n >= 0.
*
* The parameter ne specifies the number of (structurally) non-zero
* elements in the matrix, ne >= 0.
*
* Elements of the matrix are specified as doublets (ia[k],ja[k]) for
* k = 1,...,ne, where ia[k] is a row index, ja[k] is a column index.
*
* The routine glp_check_dup can be used prior to a call to the routine
* glp_load_matrix to check that the constraint matrix to be loaded has
* no duplicate elements.
*
* RETURNS
*
* The routine glp_check_dup returns one of the following values:
*
* 0 - the matrix has no duplicate elements;
*
* -k - indices ia[k] or/and ja[k] are out of range;
*
* +k - element (ia[k],ja[k]) is duplicate. */
int glp_check_dup(int m, int n, int ne, const int ia[], const int ja[])
{ int i, j, k, *ptr, *next, ret;
char *flag;
if (m < 0)
xerror("glp_check_dup: m = %d; invalid parameter\n");
if (n < 0)
xerror("glp_check_dup: n = %d; invalid parameter\n");
if (ne < 0)
xerror("glp_check_dup: ne = %d; invalid parameter\n");
if (ne > 0 && ia == NULL)
xerror("glp_check_dup: ia = %p; invalid parameter\n", ia);
if (ne > 0 && ja == NULL)
xerror("glp_check_dup: ja = %p; invalid parameter\n", ja);
for (k = 1; k <= ne; k++)
{ i = ia[k], j = ja[k];
if (!(1 <= i && i <= m && 1 <= j && j <= n))
{ ret = -k;
goto done;
}
}
if (m == 0 || n == 0)
{ ret = 0;
goto done;
}
/* allocate working arrays */
ptr = xcalloc(1+m, sizeof(int));
next = xcalloc(1+ne, sizeof(int));
flag = xcalloc(1+n, sizeof(char));
/* build row lists */
for (i = 1; i <= m; i++)
ptr[i] = 0;
for (k = 1; k <= ne; k++)
{ i = ia[k];
next[k] = ptr[i];
ptr[i] = k;
}
/* clear column flags */
for (j = 1; j <= n; j++)
flag[j] = 0;
/* check for duplicate elements */
for (i = 1; i <= m; i++)
{ for (k = ptr[i]; k != 0; k = next[k])
{ j = ja[k];
if (flag[j])
{ /* find first element (i,j) */
for (k = 1; k <= ne; k++)
if (ia[k] == i && ja[k] == j) break;
xassert(k <= ne);
/* find next (duplicate) element (i,j) */
for (k++; k <= ne; k++)
if (ia[k] == i && ja[k] == j) break;
xassert(k <= ne);
ret = +k;
goto skip;
}
flag[j] = 1;
}
/* clear column flags */
for (k = ptr[i]; k != 0; k = next[k])
flag[ja[k]] = 0;
}
/* no duplicate element found */
ret = 0;
skip: /* free working arrays */
xfree(ptr);
xfree(next);
xfree(flag);
done: return ret;
}
/***********************************************************************
* NAME
*
* glp_sort_matrix - sort elements of the constraint matrix
*
* SYNOPSIS
*
* void glp_sort_matrix(glp_prob *P);
*
* DESCRIPTION
*
* The routine glp_sort_matrix sorts elements of the constraint matrix
* rebuilding its row and column linked lists. On exit from the routine
* the constraint matrix is not changed, however, elements in the row
* linked lists become ordered by ascending column indices, and the
* elements in the column linked lists become ordered by ascending row
* indices. */
void glp_sort_matrix(glp_prob *P)
{ GLPAIJ *aij;
int i, j;
if (P == NULL || P->magic != GLP_PROB_MAGIC)
xerror("glp_sort_matrix: P = %p; invalid problem object\n",
P);
/* rebuild row linked lists */
for (i = P->m; i >= 1; i--)
P->row[i]->ptr = NULL;
for (j = P->n; j >= 1; j--)
{ for (aij = P->col[j]->ptr; aij != NULL; aij = aij->c_next)
{ i = aij->row->i;
aij->r_prev = NULL;
aij->r_next = P->row[i]->ptr;
if (aij->r_next != NULL) aij->r_next->r_prev = aij;
P->row[i]->ptr = aij;
}
}
/* rebuild column linked lists */
for (j = P->n; j >= 1; j--)
P->col[j]->ptr = NULL;
for (i = P->m; i >= 1; i--)
{ for (aij = P->row[i]->ptr; aij != NULL; aij = aij->r_next)
{ j = aij->col->j;
aij->c_prev = NULL;
aij->c_next = P->col[j]->ptr;
if (aij->c_next != NULL) aij->c_next->c_prev = aij;
P->col[j]->ptr = aij;
}
}
return;
}
/***********************************************************************
* NAME
*
* glp_del_rows - delete rows from problem object
*
* SYNOPSIS
*
* void glp_del_rows(glp_prob *lp, int nrs, const int num[]);
*
* DESCRIPTION
*
* The routine glp_del_rows deletes rows from the specified problem
* object. Ordinal numbers of rows to be deleted should be placed in
* locations num[1], ..., num[nrs], where nrs > 0.
*
* Note that deleting rows involves changing ordinal numbers of other
* rows remaining in the problem object. New ordinal numbers of the
* remaining rows are assigned under the assumption that the original
* order of rows is not changed. */
void glp_del_rows(glp_prob *lp, int nrs, const int num[])
{ glp_tree *tree = lp->tree;
GLPROW *row;
int i, k, m_new;
/* mark rows to be deleted */
if (!(1 <= nrs && nrs <= lp->m))
xerror("glp_del_rows: nrs = %d; invalid number of rows\n",
nrs);
for (k = 1; k <= nrs; k++)
{ /* take the number of row to be deleted */
i = num[k];
/* obtain pointer to i-th row */
if (!(1 <= i && i <= lp->m))
xerror("glp_del_rows: num[%d] = %d; row number out of range"
"\n", k, i);
row = lp->row[i];
if (tree != NULL && tree->reason != 0)
{ if (!(tree->reason == GLP_IROWGEN ||
tree->reason == GLP_ICUTGEN))
xerror("glp_del_rows: operation not allowed\n");
xassert(tree->curr != NULL);
if (row->level != tree->curr->level)
xerror("glp_del_rows: num[%d] = %d; invalid attempt to d"
"elete row created not in current subproblem\n", k,i);
if (row->stat != GLP_BS)
xerror("glp_del_rows: num[%d] = %d; invalid attempt to d"
"elete active row (constraint)\n", k, i);
tree->reinv = 1;
}
/* check that the row is not marked yet */
if (row->i == 0)
xerror("glp_del_rows: num[%d] = %d; duplicate row numbers n"
"ot allowed\n", k, i);
/* erase symbolic name assigned to the row */
glp_set_row_name(lp, i, NULL);
xassert(row->node == NULL);
/* erase corresponding row of the constraint matrix */
glp_set_mat_row(lp, i, 0, NULL, NULL);
xassert(row->ptr == NULL);
/* mark the row to be deleted */
row->i = 0;
}
/* delete all marked rows from the row list */
m_new = 0;
for (i = 1; i <= lp->m; i++)
{ /* obtain pointer to i-th row */
row = lp->row[i];
/* check if the row is marked */
if (row->i == 0)
{ /* it is marked, delete it */
dmp_free_atom(lp->pool, row, sizeof(GLPROW));
}
else
{ /* it is not marked; keep it */
row->i = ++m_new;
lp->row[row->i] = row;
}
}
/* set new number of rows */
lp->m = m_new;
/* invalidate the basis factorization */
lp->valid = 0;
return;
}
/***********************************************************************
* NAME
*
* glp_del_cols - delete columns from problem object
*
* SYNOPSIS
*
* void glp_del_cols(glp_prob *lp, int ncs, const int num[]);
*
* DESCRIPTION
*
* The routine glp_del_cols deletes columns from the specified problem
* object. Ordinal numbers of columns to be deleted should be placed in
* locations num[1], ..., num[ncs], where ncs > 0.
*
* Note that deleting columns involves changing ordinal numbers of
* other columns remaining in the problem object. New ordinal numbers
* of the remaining columns are assigned under the assumption that the
* original order of columns is not changed. */
void glp_del_cols(glp_prob *lp, int ncs, const int num[])
{ glp_tree *tree = lp->tree;
GLPCOL *col;
int j, k, n_new;
if (tree != NULL && tree->reason != 0)
xerror("glp_del_cols: operation not allowed\n");
/* mark columns to be deleted */
if (!(1 <= ncs && ncs <= lp->n))
xerror("glp_del_cols: ncs = %d; invalid number of columns\n",
ncs);
for (k = 1; k <= ncs; k++)
{ /* take the number of column to be deleted */
j = num[k];
/* obtain pointer to j-th column */
if (!(1 <= j && j <= lp->n))
xerror("glp_del_cols: num[%d] = %d; column number out of ra"
"nge", k, j);
col = lp->col[j];
/* check that the column is not marked yet */
if (col->j == 0)
xerror("glp_del_cols: num[%d] = %d; duplicate column number"
"s not allowed\n", k, j);
/* erase symbolic name assigned to the column */
glp_set_col_name(lp, j, NULL);
xassert(col->node == NULL);
/* erase corresponding column of the constraint matrix */
glp_set_mat_col(lp, j, 0, NULL, NULL);
xassert(col->ptr == NULL);
/* mark the column to be deleted */
col->j = 0;
/* if it is basic, invalidate the basis factorization */
if (col->stat == GLP_BS) lp->valid = 0;
}
/* delete all marked columns from the column list */
n_new = 0;
for (j = 1; j <= lp->n; j++)
{ /* obtain pointer to j-th column */
col = lp->col[j];
/* check if the column is marked */
if (col->j == 0)
{ /* it is marked; delete it */
dmp_free_atom(lp->pool, col, sizeof(GLPCOL));
}
else
{ /* it is not marked; keep it */
col->j = ++n_new;
lp->col[col->j] = col;
}
}
/* set new number of columns */
lp->n = n_new;
/* if the basis header is still valid, adjust it */
if (lp->valid)
{ int m = lp->m;
int *head = lp->head;
for (j = 1; j <= n_new; j++)
{ k = lp->col[j]->bind;
if (k != 0)
{ xassert(1 <= k && k <= m);
head[k] = m + j;
}
}
}
return;
}
/***********************************************************************
* NAME
*
* glp_copy_prob - copy problem object content
*
* SYNOPSIS
*
* void glp_copy_prob(glp_prob *dest, glp_prob *prob, int names);
*
* DESCRIPTION
*
* The routine glp_copy_prob copies the content of the problem object
* prob to the problem object dest.
*
* The parameter names is a flag. If it is non-zero, the routine also
* copies all symbolic names; otherwise, if it is zero, symbolic names
* are not copied. */
void glp_copy_prob(glp_prob *dest, glp_prob *prob, int names)
{ glp_tree *tree = dest->tree;
glp_bfcp bfcp;
int i, j, len, *ind;
double *val;
if (tree != NULL && tree->reason != 0)
xerror("glp_copy_prob: operation not allowed\n");
if (dest == prob)
xerror("glp_copy_prob: copying problem object to itself not al"
"lowed\n");
if (!(names == GLP_ON || names == GLP_OFF))
xerror("glp_copy_prob: names = %d; invalid parameter\n",
names);
glp_erase_prob(dest);
if (names && prob->name != NULL)
glp_set_prob_name(dest, prob->name);
if (names && prob->obj != NULL)
glp_set_obj_name(dest, prob->obj);
dest->dir = prob->dir;
dest->c0 = prob->c0;
if (prob->m > 0)
glp_add_rows(dest, prob->m);
if (prob->n > 0)
glp_add_cols(dest, prob->n);
glp_get_bfcp(prob, &bfcp);
glp_set_bfcp(dest, &bfcp);
dest->pbs_stat = prob->pbs_stat;
dest->dbs_stat = prob->dbs_stat;
dest->obj_val = prob->obj_val;
dest->some = prob->some;
dest->ipt_stat = prob->ipt_stat;
dest->ipt_obj = prob->ipt_obj;
dest->mip_stat = prob->mip_stat;
dest->mip_obj = prob->mip_obj;
for (i = 1; i <= prob->m; i++)
{ GLPROW *to = dest->row[i];
GLPROW *from = prob->row[i];
if (names && from->name != NULL)
glp_set_row_name(dest, i, from->name);
to->type = from->type;
to->lb = from->lb;
to->ub = from->ub;
to->rii = from->rii;
to->stat = from->stat;
to->prim = from->prim;
to->dual = from->dual;
to->pval = from->pval;
to->dval = from->dval;
to->mipx = from->mipx;
}
ind = xcalloc(1+prob->m, sizeof(int));
val = xcalloc(1+prob->m, sizeof(double));
for (j = 1; j <= prob->n; j++)
{ GLPCOL *to = dest->col[j];
GLPCOL *from = prob->col[j];
if (names && from->name != NULL)
glp_set_col_name(dest, j, from->name);
to->kind = from->kind;
to->type = from->type;
to->lb = from->lb;
to->ub = from->ub;
to->coef = from->coef;
len = glp_get_mat_col(prob, j, ind, val);
glp_set_mat_col(dest, j, len, ind, val);
to->sjj = from->sjj;
to->stat = from->stat;
to->prim = from->prim;
to->dual = from->dual;
to->pval = from->pval;
to->dval = from->dval;
to->mipx = from->mipx;
}
xfree(ind);
xfree(val);
return;
}
/***********************************************************************
* NAME
*
* glp_erase_prob - erase problem object content
*
* SYNOPSIS
*
* void glp_erase_prob(glp_prob *lp);
*
* DESCRIPTION
*
* The routine glp_erase_prob erases the content of the specified
* problem object. The effect of this operation is the same as if the
* problem object would be deleted with the routine glp_delete_prob and
* then created anew with the routine glp_create_prob, with exception
* that the handle (pointer) to the problem object remains valid. */
static void delete_prob(glp_prob *lp);
void glp_erase_prob(glp_prob *lp)
{ glp_tree *tree = lp->tree;
if (tree != NULL && tree->reason != 0)
xerror("glp_erase_prob: operation not allowed\n");
delete_prob(lp);
create_prob(lp);
return;
}
/***********************************************************************
* NAME
*
* glp_delete_prob - delete problem object
*
* SYNOPSIS
*
* void glp_delete_prob(glp_prob *lp);
*
* DESCRIPTION
*
* The routine glp_delete_prob deletes the specified problem object and
* frees all the memory allocated to it. */
static void delete_prob(glp_prob *lp)
{ lp->magic = 0x3F3F3F3F;
dmp_delete_pool(lp->pool);
#if 0 /* 08/III-2014 */
#if 0 /* 17/XI-2009 */
xfree(lp->cps);
#else
if (lp->parms != NULL) xfree(lp->parms);
#endif
#endif
xassert(lp->tree == NULL);
#if 0
if (lp->cwa != NULL) xfree(lp->cwa);
#endif
xfree(lp->row);
xfree(lp->col);
if (lp->r_tree != NULL) avl_delete_tree(lp->r_tree);
if (lp->c_tree != NULL) avl_delete_tree(lp->c_tree);
xfree(lp->head);
#if 0 /* 08/III-2014 */
if (lp->bfcp != NULL) xfree(lp->bfcp);
#endif
if (lp->bfd != NULL) bfd_delete_it(lp->bfd);
return;
}
void glp_delete_prob(glp_prob *lp)
{ glp_tree *tree = lp->tree;
if (tree != NULL && tree->reason != 0)
xerror("glp_delete_prob: operation not allowed\n");
delete_prob(lp);
xfree(lp);
return;
}
/* eof */