You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

118 lines
3.4 KiB

/* Rectifiable polyomino tilings generator */
/* Written and converted to GNU MathProg by NASZVADI, Peter, 2007-2017
<vuk@cs.elte.hu> */
/*
This model searches for a maximal packing of a given polyomino
composed of unit squares in a given rectangle. In a feasible packing, a
placed polyomino and its intersection of a unit square's inner part in
the rectangle must be the square or empty. If there exists a packing
that covers totally the rectangle, then the polyomino is called
"rectifiable"
Summary:
Decides if an Im * Jm rectangle could be tiled with given pattern
and prints a (sub)optimal solution if found
Generated magic numbers are implicit tables, check them:
# for magic in 3248 688 1660 3260
do printf "Magic % 5d:" "$magic"
for e in 0 1 2 3 4 5 6 7
do printf "% 3d" "$((-1 + ((magic / (3**e)) % 3)))"
done
echo
done
Magic 3248: 1 1 -1 -1 0 0 0 0
Magic 688: 0 0 0 0 1 1 -1 -1
Magic 1660: 0 0 0 0 1 -1 1 -1
Magic 3260: 1 -1 1 -1 0 0 0 0
#
*/
param Im, default 3;
/* vertical edge length of the box */
param Jm, default 3;
/* horizontal edge length of the box */
set S, default {(0, 0), (1, 0), (2, 0), (0, 1), (1, 1), (2, 1), (0, 2)};
/* P-heptomino is the default shape. More info on this heptomino:
http://www.cflmath.com/Polyomino/7omino4_rect.html */
set I := 1..Im;
/* rows of rectangle */
set J := 1..Jm;
/* columns of rectangle */
set IJ := I cross J;
/* the rectangle itself */
set E := 0..7;
/* helper set to allow iterating on all transformations of the S shape */
set Shifts := setof{(i, j, e) in IJ cross E:
setof{(x, y) in S}
((x * (-1 + floor(3248 / 3^e) mod 3)) +
(y * (-1 + floor(688 / 3^e) mod 3)) + i,
(x * (-1 + floor(1660 / 3^e) mod 3)) +
(y * (-1 + floor(3260 / 3^e) mod 3)) + j) within IJ}(i, j, e);
/* all shifted, flipped, rotated, mirrored mappings of polyomino that
contained by the rectangle */
var cell{IJ}, binary;
/* booleans denoting if a cell is covered in the rectangle */
var tile{Shifts}, binary;
/* booleans denoting usage of a shift */
var objvalue;
s.t. covers{(i, j) in IJ}: sum{(k, l, e, a, b) in Shifts cross S:
i = k + a * (-1 + floor(3248 / 3^e) mod 3) +
b * (-1 + floor(688 / 3^e) mod 3)
and
j = l + a * (-1 + floor(1660 / 3^e) mod 3) +
b * (-1 + floor(3260 / 3^e) mod 3)
}tile[k, l, e] = cell[i, j];
s.t. objeval: sum{(i, j) in IJ}cell[i, j] - objvalue = 0;
maximize obj: objvalue;
solve;
printf '\nCovered cells/all cells = %d/%d\n\n', objvalue.val, Im * Jm;
printf '\nA tiling:\n\n';
for{i in I}{
for{j in J}{
printf '%s', if cell[i, j].val then '' else ' *** ';
for{(k, l, e, a, b) in Shifts cross S:
cell[i, j].val
and i = k + a * (-1 + floor(3248 / 3^e) mod 3) +
b * (-1 + floor(688 / 3^e) mod 3)
and j = l + a * (-1 + floor(1660 / 3^e) mod 3) +
b * (-1 + floor(3260 / 3^e) mod 3)
and tile[k, l, e].val
}{
printf '% 5d', (k * Jm + l) * 8 + e;
}
}
printf '\n';
}
printf '\n';
data;
param Im := 14;
/* here can be set rectangle's one side */
param Jm := 14;
/* here can be set rectangle's other side */
set S := (0,0),(1,0),(2,0),(0,1),(1,1),(2,1),(0,2);
/* here you can specify arbitrary polyomino */
end;