You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
330 lines
11 KiB
330 lines
11 KiB
/* glpapi16.c (graph and network analysis routines) */
|
|
|
|
/***********************************************************************
|
|
* This code is part of GLPK (GNU Linear Programming Kit).
|
|
*
|
|
* Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
|
|
* 2009, 2010, 2011, 2013 Andrew Makhorin, Department for Applied
|
|
* Informatics, Moscow Aviation Institute, Moscow, Russia. All rights
|
|
* reserved. E-mail: <mao@gnu.org>.
|
|
*
|
|
* GLPK is free software: you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation, either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* GLPK is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
|
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
|
|
* License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with GLPK. If not, see <http://www.gnu.org/licenses/>.
|
|
***********************************************************************/
|
|
|
|
#include "env.h"
|
|
#include "mc13d.h"
|
|
#include "prob.h"
|
|
|
|
/***********************************************************************
|
|
* NAME
|
|
*
|
|
* glp_weak_comp - find all weakly connected components of graph
|
|
*
|
|
* SYNOPSIS
|
|
*
|
|
* int glp_weak_comp(glp_graph *G, int v_num);
|
|
*
|
|
* DESCRIPTION
|
|
*
|
|
* The routine glp_weak_comp finds all weakly connected components of
|
|
* the specified graph.
|
|
*
|
|
* The parameter v_num specifies an offset of the field of type int
|
|
* in the vertex data block, to which the routine stores the number of
|
|
* a (weakly) connected component containing that vertex. If v_num < 0,
|
|
* no component numbers are stored.
|
|
*
|
|
* The components are numbered in arbitrary order from 1 to nc, where
|
|
* nc is the total number of components found, 0 <= nc <= |V|.
|
|
*
|
|
* RETURNS
|
|
*
|
|
* The routine returns nc, the total number of components found. */
|
|
|
|
int glp_weak_comp(glp_graph *G, int v_num)
|
|
{ glp_vertex *v;
|
|
glp_arc *a;
|
|
int f, i, j, nc, nv, pos1, pos2, *prev, *next, *list;
|
|
if (v_num >= 0 && v_num > G->v_size - (int)sizeof(int))
|
|
xerror("glp_weak_comp: v_num = %d; invalid offset\n", v_num);
|
|
nv = G->nv;
|
|
if (nv == 0)
|
|
{ nc = 0;
|
|
goto done;
|
|
}
|
|
/* allocate working arrays */
|
|
prev = xcalloc(1+nv, sizeof(int));
|
|
next = xcalloc(1+nv, sizeof(int));
|
|
list = xcalloc(1+nv, sizeof(int));
|
|
/* if vertex i is unlabelled, prev[i] is the index of previous
|
|
unlabelled vertex, and next[i] is the index of next unlabelled
|
|
vertex; if vertex i is labelled, then prev[i] < 0, and next[i]
|
|
is the connected component number */
|
|
/* initially all vertices are unlabelled */
|
|
f = 1;
|
|
for (i = 1; i <= nv; i++)
|
|
prev[i] = i - 1, next[i] = i + 1;
|
|
next[nv] = 0;
|
|
/* main loop (until all vertices have been labelled) */
|
|
nc = 0;
|
|
while (f != 0)
|
|
{ /* take an unlabelled vertex */
|
|
i = f;
|
|
/* and remove it from the list of unlabelled vertices */
|
|
f = next[i];
|
|
if (f != 0) prev[f] = 0;
|
|
/* label the vertex; it begins a new component */
|
|
prev[i] = -1, next[i] = ++nc;
|
|
/* breadth first search */
|
|
list[1] = i, pos1 = pos2 = 1;
|
|
while (pos1 <= pos2)
|
|
{ /* dequeue vertex i */
|
|
i = list[pos1++];
|
|
/* consider all arcs incoming to vertex i */
|
|
for (a = G->v[i]->in; a != NULL; a = a->h_next)
|
|
{ /* vertex j is adjacent to vertex i */
|
|
j = a->tail->i;
|
|
if (prev[j] >= 0)
|
|
{ /* vertex j is unlabelled */
|
|
/* remove it from the list of unlabelled vertices */
|
|
if (prev[j] == 0)
|
|
f = next[j];
|
|
else
|
|
next[prev[j]] = next[j];
|
|
if (next[j] == 0)
|
|
;
|
|
else
|
|
prev[next[j]] = prev[j];
|
|
/* label the vertex */
|
|
prev[j] = -1, next[j] = nc;
|
|
/* and enqueue it for further consideration */
|
|
list[++pos2] = j;
|
|
}
|
|
}
|
|
/* consider all arcs outgoing from vertex i */
|
|
for (a = G->v[i]->out; a != NULL; a = a->t_next)
|
|
{ /* vertex j is adjacent to vertex i */
|
|
j = a->head->i;
|
|
if (prev[j] >= 0)
|
|
{ /* vertex j is unlabelled */
|
|
/* remove it from the list of unlabelled vertices */
|
|
if (prev[j] == 0)
|
|
f = next[j];
|
|
else
|
|
next[prev[j]] = next[j];
|
|
if (next[j] == 0)
|
|
;
|
|
else
|
|
prev[next[j]] = prev[j];
|
|
/* label the vertex */
|
|
prev[j] = -1, next[j] = nc;
|
|
/* and enqueue it for further consideration */
|
|
list[++pos2] = j;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
/* store component numbers */
|
|
if (v_num >= 0)
|
|
{ for (i = 1; i <= nv; i++)
|
|
{ v = G->v[i];
|
|
memcpy((char *)v->data + v_num, &next[i], sizeof(int));
|
|
}
|
|
}
|
|
/* free working arrays */
|
|
xfree(prev);
|
|
xfree(next);
|
|
xfree(list);
|
|
done: return nc;
|
|
}
|
|
|
|
/***********************************************************************
|
|
* NAME
|
|
*
|
|
* glp_strong_comp - find all strongly connected components of graph
|
|
*
|
|
* SYNOPSIS
|
|
*
|
|
* int glp_strong_comp(glp_graph *G, int v_num);
|
|
*
|
|
* DESCRIPTION
|
|
*
|
|
* The routine glp_strong_comp finds all strongly connected components
|
|
* of the specified graph.
|
|
*
|
|
* The parameter v_num specifies an offset of the field of type int
|
|
* in the vertex data block, to which the routine stores the number of
|
|
* a strongly connected component containing that vertex. If v_num < 0,
|
|
* no component numbers are stored.
|
|
*
|
|
* The components are numbered in arbitrary order from 1 to nc, where
|
|
* nc is the total number of components found, 0 <= nc <= |V|. However,
|
|
* the component numbering has the property that for every arc (i->j)
|
|
* in the graph the condition num(i) >= num(j) holds.
|
|
*
|
|
* RETURNS
|
|
*
|
|
* The routine returns nc, the total number of components found. */
|
|
|
|
int glp_strong_comp(glp_graph *G, int v_num)
|
|
{ glp_vertex *v;
|
|
glp_arc *a;
|
|
int i, k, last, n, na, nc, *icn, *ip, *lenr, *ior, *ib, *lowl,
|
|
*numb, *prev;
|
|
if (v_num >= 0 && v_num > G->v_size - (int)sizeof(int))
|
|
xerror("glp_strong_comp: v_num = %d; invalid offset\n",
|
|
v_num);
|
|
n = G->nv;
|
|
if (n == 0)
|
|
{ nc = 0;
|
|
goto done;
|
|
}
|
|
na = G->na;
|
|
icn = xcalloc(1+na, sizeof(int));
|
|
ip = xcalloc(1+n, sizeof(int));
|
|
lenr = xcalloc(1+n, sizeof(int));
|
|
ior = xcalloc(1+n, sizeof(int));
|
|
ib = xcalloc(1+n, sizeof(int));
|
|
lowl = xcalloc(1+n, sizeof(int));
|
|
numb = xcalloc(1+n, sizeof(int));
|
|
prev = xcalloc(1+n, sizeof(int));
|
|
k = 1;
|
|
for (i = 1; i <= n; i++)
|
|
{ v = G->v[i];
|
|
ip[i] = k;
|
|
for (a = v->out; a != NULL; a = a->t_next)
|
|
icn[k++] = a->head->i;
|
|
lenr[i] = k - ip[i];
|
|
}
|
|
xassert(na == k-1);
|
|
nc = mc13d(n, icn, ip, lenr, ior, ib, lowl, numb, prev);
|
|
if (v_num >= 0)
|
|
{ xassert(ib[1] == 1);
|
|
for (k = 1; k <= nc; k++)
|
|
{ last = (k < nc ? ib[k+1] : n+1);
|
|
xassert(ib[k] < last);
|
|
for (i = ib[k]; i < last; i++)
|
|
{ v = G->v[ior[i]];
|
|
memcpy((char *)v->data + v_num, &k, sizeof(int));
|
|
}
|
|
}
|
|
}
|
|
xfree(icn);
|
|
xfree(ip);
|
|
xfree(lenr);
|
|
xfree(ior);
|
|
xfree(ib);
|
|
xfree(lowl);
|
|
xfree(numb);
|
|
xfree(prev);
|
|
done: return nc;
|
|
}
|
|
|
|
/***********************************************************************
|
|
* NAME
|
|
*
|
|
* glp_top_sort - topological sorting of acyclic digraph
|
|
*
|
|
* SYNOPSIS
|
|
*
|
|
* int glp_top_sort(glp_graph *G, int v_num);
|
|
*
|
|
* DESCRIPTION
|
|
*
|
|
* The routine glp_top_sort performs topological sorting of vertices of
|
|
* the specified acyclic digraph.
|
|
*
|
|
* The parameter v_num specifies an offset of the field of type int in
|
|
* the vertex data block, to which the routine stores the vertex number
|
|
* assigned. If v_num < 0, vertex numbers are not stored.
|
|
*
|
|
* The vertices are numbered from 1 to n, where n is the total number
|
|
* of vertices in the graph. The vertex numbering has the property that
|
|
* for every arc (i->j) in the graph the condition num(i) < num(j)
|
|
* holds. Special case num(i) = 0 means that vertex i is not assigned a
|
|
* number, because the graph is *not* acyclic.
|
|
*
|
|
* RETURNS
|
|
*
|
|
* If the graph is acyclic and therefore all the vertices have been
|
|
* assigned numbers, the routine glp_top_sort returns zero. Otherwise,
|
|
* if the graph is not acyclic, the routine returns the number of
|
|
* vertices which have not been numbered, i.e. for which num(i) = 0. */
|
|
|
|
static int top_sort(glp_graph *G, int num[])
|
|
{ glp_arc *a;
|
|
int i, j, cnt, top, *stack, *indeg;
|
|
/* allocate working arrays */
|
|
indeg = xcalloc(1+G->nv, sizeof(int));
|
|
stack = xcalloc(1+G->nv, sizeof(int));
|
|
/* determine initial indegree of each vertex; push into the stack
|
|
the vertices having zero indegree */
|
|
top = 0;
|
|
for (i = 1; i <= G->nv; i++)
|
|
{ num[i] = indeg[i] = 0;
|
|
for (a = G->v[i]->in; a != NULL; a = a->h_next)
|
|
indeg[i]++;
|
|
if (indeg[i] == 0)
|
|
stack[++top] = i;
|
|
}
|
|
/* assign numbers to vertices in the sorted order */
|
|
cnt = 0;
|
|
while (top > 0)
|
|
{ /* pull vertex i from the stack */
|
|
i = stack[top--];
|
|
/* it has zero indegree in the current graph */
|
|
xassert(indeg[i] == 0);
|
|
/* so assign it a next number */
|
|
xassert(num[i] == 0);
|
|
num[i] = ++cnt;
|
|
/* remove vertex i from the current graph, update indegree of
|
|
its adjacent vertices, and push into the stack new vertices
|
|
whose indegree becomes zero */
|
|
for (a = G->v[i]->out; a != NULL; a = a->t_next)
|
|
{ j = a->head->i;
|
|
/* there exists arc (i->j) in the graph */
|
|
xassert(indeg[j] > 0);
|
|
indeg[j]--;
|
|
if (indeg[j] == 0)
|
|
stack[++top] = j;
|
|
}
|
|
}
|
|
/* free working arrays */
|
|
xfree(indeg);
|
|
xfree(stack);
|
|
return G->nv - cnt;
|
|
}
|
|
|
|
int glp_top_sort(glp_graph *G, int v_num)
|
|
{ glp_vertex *v;
|
|
int i, cnt, *num;
|
|
if (v_num >= 0 && v_num > G->v_size - (int)sizeof(int))
|
|
xerror("glp_top_sort: v_num = %d; invalid offset\n", v_num);
|
|
if (G->nv == 0)
|
|
{ cnt = 0;
|
|
goto done;
|
|
}
|
|
num = xcalloc(1+G->nv, sizeof(int));
|
|
cnt = top_sort(G, num);
|
|
if (v_num >= 0)
|
|
{ for (i = 1; i <= G->nv; i++)
|
|
{ v = G->v[i];
|
|
memcpy((char *)v->data + v_num, &num[i], sizeof(int));
|
|
}
|
|
}
|
|
xfree(num);
|
|
done: return cnt;
|
|
}
|
|
|
|
/* eof */
|