You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

330 lines
11 KiB

/* glpapi16.c (graph and network analysis routines) */
/***********************************************************************
* This code is part of GLPK (GNU Linear Programming Kit).
*
* Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
* 2009, 2010, 2011, 2013 Andrew Makhorin, Department for Applied
* Informatics, Moscow Aviation Institute, Moscow, Russia. All rights
* reserved. E-mail: <mao@gnu.org>.
*
* GLPK is free software: you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GLPK is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
* License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GLPK. If not, see <http://www.gnu.org/licenses/>.
***********************************************************************/
#include "env.h"
#include "mc13d.h"
#include "prob.h"
/***********************************************************************
* NAME
*
* glp_weak_comp - find all weakly connected components of graph
*
* SYNOPSIS
*
* int glp_weak_comp(glp_graph *G, int v_num);
*
* DESCRIPTION
*
* The routine glp_weak_comp finds all weakly connected components of
* the specified graph.
*
* The parameter v_num specifies an offset of the field of type int
* in the vertex data block, to which the routine stores the number of
* a (weakly) connected component containing that vertex. If v_num < 0,
* no component numbers are stored.
*
* The components are numbered in arbitrary order from 1 to nc, where
* nc is the total number of components found, 0 <= nc <= |V|.
*
* RETURNS
*
* The routine returns nc, the total number of components found. */
int glp_weak_comp(glp_graph *G, int v_num)
{ glp_vertex *v;
glp_arc *a;
int f, i, j, nc, nv, pos1, pos2, *prev, *next, *list;
if (v_num >= 0 && v_num > G->v_size - (int)sizeof(int))
xerror("glp_weak_comp: v_num = %d; invalid offset\n", v_num);
nv = G->nv;
if (nv == 0)
{ nc = 0;
goto done;
}
/* allocate working arrays */
prev = xcalloc(1+nv, sizeof(int));
next = xcalloc(1+nv, sizeof(int));
list = xcalloc(1+nv, sizeof(int));
/* if vertex i is unlabelled, prev[i] is the index of previous
unlabelled vertex, and next[i] is the index of next unlabelled
vertex; if vertex i is labelled, then prev[i] < 0, and next[i]
is the connected component number */
/* initially all vertices are unlabelled */
f = 1;
for (i = 1; i <= nv; i++)
prev[i] = i - 1, next[i] = i + 1;
next[nv] = 0;
/* main loop (until all vertices have been labelled) */
nc = 0;
while (f != 0)
{ /* take an unlabelled vertex */
i = f;
/* and remove it from the list of unlabelled vertices */
f = next[i];
if (f != 0) prev[f] = 0;
/* label the vertex; it begins a new component */
prev[i] = -1, next[i] = ++nc;
/* breadth first search */
list[1] = i, pos1 = pos2 = 1;
while (pos1 <= pos2)
{ /* dequeue vertex i */
i = list[pos1++];
/* consider all arcs incoming to vertex i */
for (a = G->v[i]->in; a != NULL; a = a->h_next)
{ /* vertex j is adjacent to vertex i */
j = a->tail->i;
if (prev[j] >= 0)
{ /* vertex j is unlabelled */
/* remove it from the list of unlabelled vertices */
if (prev[j] == 0)
f = next[j];
else
next[prev[j]] = next[j];
if (next[j] == 0)
;
else
prev[next[j]] = prev[j];
/* label the vertex */
prev[j] = -1, next[j] = nc;
/* and enqueue it for further consideration */
list[++pos2] = j;
}
}
/* consider all arcs outgoing from vertex i */
for (a = G->v[i]->out; a != NULL; a = a->t_next)
{ /* vertex j is adjacent to vertex i */
j = a->head->i;
if (prev[j] >= 0)
{ /* vertex j is unlabelled */
/* remove it from the list of unlabelled vertices */
if (prev[j] == 0)
f = next[j];
else
next[prev[j]] = next[j];
if (next[j] == 0)
;
else
prev[next[j]] = prev[j];
/* label the vertex */
prev[j] = -1, next[j] = nc;
/* and enqueue it for further consideration */
list[++pos2] = j;
}
}
}
}
/* store component numbers */
if (v_num >= 0)
{ for (i = 1; i <= nv; i++)
{ v = G->v[i];
memcpy((char *)v->data + v_num, &next[i], sizeof(int));
}
}
/* free working arrays */
xfree(prev);
xfree(next);
xfree(list);
done: return nc;
}
/***********************************************************************
* NAME
*
* glp_strong_comp - find all strongly connected components of graph
*
* SYNOPSIS
*
* int glp_strong_comp(glp_graph *G, int v_num);
*
* DESCRIPTION
*
* The routine glp_strong_comp finds all strongly connected components
* of the specified graph.
*
* The parameter v_num specifies an offset of the field of type int
* in the vertex data block, to which the routine stores the number of
* a strongly connected component containing that vertex. If v_num < 0,
* no component numbers are stored.
*
* The components are numbered in arbitrary order from 1 to nc, where
* nc is the total number of components found, 0 <= nc <= |V|. However,
* the component numbering has the property that for every arc (i->j)
* in the graph the condition num(i) >= num(j) holds.
*
* RETURNS
*
* The routine returns nc, the total number of components found. */
int glp_strong_comp(glp_graph *G, int v_num)
{ glp_vertex *v;
glp_arc *a;
int i, k, last, n, na, nc, *icn, *ip, *lenr, *ior, *ib, *lowl,
*numb, *prev;
if (v_num >= 0 && v_num > G->v_size - (int)sizeof(int))
xerror("glp_strong_comp: v_num = %d; invalid offset\n",
v_num);
n = G->nv;
if (n == 0)
{ nc = 0;
goto done;
}
na = G->na;
icn = xcalloc(1+na, sizeof(int));
ip = xcalloc(1+n, sizeof(int));
lenr = xcalloc(1+n, sizeof(int));
ior = xcalloc(1+n, sizeof(int));
ib = xcalloc(1+n, sizeof(int));
lowl = xcalloc(1+n, sizeof(int));
numb = xcalloc(1+n, sizeof(int));
prev = xcalloc(1+n, sizeof(int));
k = 1;
for (i = 1; i <= n; i++)
{ v = G->v[i];
ip[i] = k;
for (a = v->out; a != NULL; a = a->t_next)
icn[k++] = a->head->i;
lenr[i] = k - ip[i];
}
xassert(na == k-1);
nc = mc13d(n, icn, ip, lenr, ior, ib, lowl, numb, prev);
if (v_num >= 0)
{ xassert(ib[1] == 1);
for (k = 1; k <= nc; k++)
{ last = (k < nc ? ib[k+1] : n+1);
xassert(ib[k] < last);
for (i = ib[k]; i < last; i++)
{ v = G->v[ior[i]];
memcpy((char *)v->data + v_num, &k, sizeof(int));
}
}
}
xfree(icn);
xfree(ip);
xfree(lenr);
xfree(ior);
xfree(ib);
xfree(lowl);
xfree(numb);
xfree(prev);
done: return nc;
}
/***********************************************************************
* NAME
*
* glp_top_sort - topological sorting of acyclic digraph
*
* SYNOPSIS
*
* int glp_top_sort(glp_graph *G, int v_num);
*
* DESCRIPTION
*
* The routine glp_top_sort performs topological sorting of vertices of
* the specified acyclic digraph.
*
* The parameter v_num specifies an offset of the field of type int in
* the vertex data block, to which the routine stores the vertex number
* assigned. If v_num < 0, vertex numbers are not stored.
*
* The vertices are numbered from 1 to n, where n is the total number
* of vertices in the graph. The vertex numbering has the property that
* for every arc (i->j) in the graph the condition num(i) < num(j)
* holds. Special case num(i) = 0 means that vertex i is not assigned a
* number, because the graph is *not* acyclic.
*
* RETURNS
*
* If the graph is acyclic and therefore all the vertices have been
* assigned numbers, the routine glp_top_sort returns zero. Otherwise,
* if the graph is not acyclic, the routine returns the number of
* vertices which have not been numbered, i.e. for which num(i) = 0. */
static int top_sort(glp_graph *G, int num[])
{ glp_arc *a;
int i, j, cnt, top, *stack, *indeg;
/* allocate working arrays */
indeg = xcalloc(1+G->nv, sizeof(int));
stack = xcalloc(1+G->nv, sizeof(int));
/* determine initial indegree of each vertex; push into the stack
the vertices having zero indegree */
top = 0;
for (i = 1; i <= G->nv; i++)
{ num[i] = indeg[i] = 0;
for (a = G->v[i]->in; a != NULL; a = a->h_next)
indeg[i]++;
if (indeg[i] == 0)
stack[++top] = i;
}
/* assign numbers to vertices in the sorted order */
cnt = 0;
while (top > 0)
{ /* pull vertex i from the stack */
i = stack[top--];
/* it has zero indegree in the current graph */
xassert(indeg[i] == 0);
/* so assign it a next number */
xassert(num[i] == 0);
num[i] = ++cnt;
/* remove vertex i from the current graph, update indegree of
its adjacent vertices, and push into the stack new vertices
whose indegree becomes zero */
for (a = G->v[i]->out; a != NULL; a = a->t_next)
{ j = a->head->i;
/* there exists arc (i->j) in the graph */
xassert(indeg[j] > 0);
indeg[j]--;
if (indeg[j] == 0)
stack[++top] = j;
}
}
/* free working arrays */
xfree(indeg);
xfree(stack);
return G->nv - cnt;
}
int glp_top_sort(glp_graph *G, int v_num)
{ glp_vertex *v;
int i, cnt, *num;
if (v_num >= 0 && v_num > G->v_size - (int)sizeof(int))
xerror("glp_top_sort: v_num = %d; invalid offset\n", v_num);
if (G->nv == 0)
{ cnt = 0;
goto done;
}
num = xcalloc(1+G->nv, sizeof(int));
cnt = top_sort(G, num);
if (v_num >= 0)
{ for (i = 1; i <= G->nv; i++)
{ v = G->v[i];
memcpy((char *)v->data + v_num, &num[i], sizeof(int));
}
}
xfree(num);
done: return cnt;
}
/* eof */