You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

634 lines
33 KiB

/*
* SparseMdpPrctlModelChecker.h
*
* Created on: 15.02.2013
* Author: Christian Dehnert
*/
#ifndef STORM_MODELCHECKER_PRCTL_SPARSEMDPPRCTLMODELCHECKER_H_
#define STORM_MODELCHECKER_PRCTL_SPARSEMDPPRCTLMODELCHECKER_H_
#include "src/modelchecker/prctl/AbstractModelChecker.h"
#include "src/models/Mdp.h"
#include "src/utility/vector.h"
#include "src/utility/graph.h"
#include <vector>
#include <stack>
namespace storm {
namespace modelchecker {
namespace prctl {
/*!
* @brief
* Interface for all model checkers that can verify PRCTL formulae over MDPs represented as a sparse matrix.
*/
template<class Type>
class SparseMdpPrctlModelChecker : public AbstractModelChecker<Type> {
public:
/*!
* Constructs a SparseMdpPrctlModelChecker with the given model.
*
* @param model The MDP to be checked.
*/
explicit SparseMdpPrctlModelChecker(storm::models::Mdp<Type> const& model) : AbstractModelChecker<Type>(model), minimumOperatorStack() {
// Intentionally left empty.
}
/*!
* Copy constructs a SparseMdpPrctlModelChecker from the given model checker. In particular, this means that the newly
* constructed model checker will have the model of the given model checker as its associated model.
*/
explicit SparseMdpPrctlModelChecker(storm::modelchecker::prctl::SparseMdpPrctlModelChecker<Type> const& modelchecker)
: AbstractModelChecker<Type>(modelchecker), minimumOperatorStack() {
// Intentionally left empty.
}
/*!
* Virtual destructor. Needs to be virtual, because this class has virtual methods.
*/
virtual ~SparseMdpPrctlModelChecker() {
// Intentionally left empty.
}
/*!
* Returns a constant reference to the MDP associated with this model checker.
* @returns A constant reference to the MDP associated with this model checker.
*/
storm::models::Mdp<Type> const& getModel() const {
return AbstractModelChecker<Type>::template getModel<storm::models::Mdp<Type>>();
}
/*!
* Checks the given formula that is a P/R operator without a bound.
*
* @param formula The formula to check.
* @returns The set of states satisfying the formula represented by a bit vector.
*/
std::vector<Type>* checkNoBoundOperator(const storm::property::prctl::AbstractNoBoundOperator<Type>& formula) const {
// Check if the operator was an non-optimality operator and report an error in that case.
if (!formula.isOptimalityOperator()) {
LOG4CPLUS_ERROR(logger, "Formula does not specify neither min nor max optimality, which is not meaningful over nondeterministic models.");
throw storm::exceptions::InvalidArgumentException() << "Formula does not specify neither min nor max optimality, which is not meaningful over nondeterministic models.";
}
minimumOperatorStack.push(formula.isMinimumOperator());
std::vector<Type>* result = formula.check(*this, false);
minimumOperatorStack.pop();
return result;
}
/*!
* Checks the given formula that is a bounded-until formula.
*
* @param formula The formula to check.
* @param qualitative A flag indicating whether the formula only needs to be evaluated qualitatively, i.e. if the
* results are only compared against the bounds 0 and 1. If set to true, this will most likely results that are only
* qualitatively correct, i.e. do not represent the correct value, but only the correct relation with respect to the
* bounds 0 and 1.
* @returns The probabilities for the given formula to hold on every state of the model associated with this model
* checker. If the qualitative flag is set, exact probabilities might not be computed.
*/
virtual std::vector<Type>* checkBoundedUntil(const storm::property::prctl::BoundedUntil<Type>& formula, bool qualitative) const {
// First, we need to compute the states that satisfy the sub-formulas of the until-formula.
storm::storage::BitVector* leftStates = formula.getLeft().check(*this);
storm::storage::BitVector* rightStates = formula.getRight().check(*this);
std::vector<Type>* result = new std::vector<Type>(this->getModel().getNumberOfStates());
// Determine the states that have 0 probability of reaching the target states.
storm::storage::BitVector statesWithProbabilityGreater0;
if (this->minimumOperatorStack.top()) {
statesWithProbabilityGreater0 = storm::utility::graph::performProbGreater0A(this->getModel(), this->getModel().getBackwardTransitions(), *leftStates, *rightStates, true, formula.getBound());
} else {
statesWithProbabilityGreater0 = storm::utility::graph::performProbGreater0E(this->getModel(), this->getModel().getBackwardTransitions(), *leftStates, *rightStates, true, formula.getBound());
}
// Check if we already know the result (i.e. probability 0) for all initial states and
// don't compute anything in this case.
if (this->getInitialStates().isDisjointFrom(statesWithProbabilityGreater0)) {
LOG4CPLUS_INFO(logger, "The probabilities for the initial states were determined in a preprocessing step."
<< " No exact probabilities were computed.");
// Set the values for all maybe-states to 0.5 to indicate that their probability values are not 0 (and
// not necessarily 1).
storm::utility::vector::setVectorValues(*result, statesWithProbabilityGreater0, Type(0.5));
} else {
// In this case we have have to compute the probabilities.
// We can eliminate the rows and columns from the original transition probability matrix that have probability 0.
storm::storage::SparseMatrix<Type> submatrix = this->getModel().getTransitionMatrix().getSubmatrix(statesWithProbabilityGreater0, this->getModel().getNondeterministicChoiceIndices());
// Get the "new" nondeterministic choice indices for the submatrix.
std::vector<uint_fast64_t> subNondeterministicChoiceIndices = this->computeNondeterministicChoiceIndicesForConstraint(statesWithProbabilityGreater0);
// Compute the new set of target states in the reduced system.
storm::storage::BitVector rightStatesInReducedSystem = statesWithProbabilityGreater0 % *rightStates;
// Make all rows absorbing that satisfy the second sub-formula.
submatrix.makeRowsAbsorbing(rightStatesInReducedSystem, subNondeterministicChoiceIndices);
// Create the vector with which to multiply.
std::vector<Type> subresult(statesWithProbabilityGreater0.getNumberOfSetBits());
storm::utility::vector::setVectorValues(subresult, rightStatesInReducedSystem, storm::utility::constGetOne<Type>());
this->performMatrixVectorMultiplication(submatrix, subresult, subNondeterministicChoiceIndices, nullptr, formula.getBound());
// Set the values of the resulting vector accordingly.
storm::utility::vector::setVectorValues(*result, statesWithProbabilityGreater0, subresult);
storm::utility::vector::setVectorValues(*result, ~statesWithProbabilityGreater0, storm::utility::constGetZero<Type>());
}
// Delete intermediate results and return result.
delete leftStates;
delete rightStates;
return result;
}
/*!
* Checks the given formula that is a next formula.
*
* @param formula The formula to check.
* @param qualitative A flag indicating whether the formula only needs to be evaluated qualitatively, i.e. if the
* results are only compared against the bounds 0 and 1. If set to true, this will most likely results that are only
* qualitatively correct, i.e. do not represent the correct value, but only the correct relation with respect to the
* bounds 0 and 1.
* @returns The probabilities for the given formula to hold on every state of the model associated with this model
* checker. If the qualitative flag is set, exact probabilities might not be computed.
*/
virtual std::vector<Type>* checkNext(const storm::property::prctl::Next<Type>& formula, bool qualitative) const {
// First, we need to compute the states that satisfy the sub-formula of the next-formula.
storm::storage::BitVector* nextStates = formula.getChild().check(*this);
// Create the vector with which to multiply and initialize it correctly.
std::vector<Type>* result = new std::vector<Type>(this->getModel().getNumberOfStates());
storm::utility::vector::setVectorValues(*result, *nextStates, storm::utility::constGetOne<Type>());
// Delete obsolete sub-result.
delete nextStates;
this->performMatrixVectorMultiplication(this->getModel().getTransitionMatrix(), *result, this->getModel().getNondeterministicChoiceIndices());
// Return result.
return result;
}
/*!
* Checks the given formula that is a bounded-eventually formula.
*
* @param formula The formula to check.
* @param qualitative A flag indicating whether the formula only needs to be evaluated qualitatively, i.e. if the
* results are only compared against the bounds 0 and 1. If set to true, this will most likely results that are only
* qualitatively correct, i.e. do not represent the correct value, but only the correct relation with respect to the
* bounds 0 and 1.
* @returns The probabilities for the given formula to hold on every state of the model associated with this model
* checker. If the qualitative flag is set, exact probabilities might not be computed.
*/
virtual std::vector<Type>* checkBoundedEventually(const storm::property::prctl::BoundedEventually<Type>& formula, bool qualitative) const {
// Create equivalent temporary bounded until formula and check it.
storm::property::prctl::BoundedUntil<Type> temporaryBoundedUntilFormula(new storm::property::prctl::Ap<Type>("true"), formula.getChild().clone(), formula.getBound());
return this->checkBoundedUntil(temporaryBoundedUntilFormula, qualitative);
}
/*!
* Checks the given formula that is an eventually formula.
*
* @param formula The formula to check.
* @param qualitative A flag indicating whether the formula only needs to be evaluated qualitatively, i.e. if the
* results are only compared against the bounds 0 and 1. If set to true, this will most likely results that are only
* qualitatively correct, i.e. do not represent the correct value, but only the correct relation with respect to the
* bounds 0 and 1.
* @returns The probabilities for the given formula to hold on every state of the model associated with this model
* checker. If the qualitative flag is set, exact probabilities might not be computed.
*/
virtual std::vector<Type>* checkEventually(const storm::property::prctl::Eventually<Type>& formula, bool qualitative) const {
// Create equivalent temporary until formula and check it.
storm::property::prctl::Until<Type> temporaryUntilFormula(new storm::property::prctl::Ap<Type>("true"), formula.getChild().clone());
return this->checkUntil(temporaryUntilFormula, qualitative);
}
/*!
* Checks the given formula that is a globally formula.
*
* @param formula The formula to check.
* @param qualitative A flag indicating whether the formula only needs to be evaluated qualitatively, i.e. if the
* results are only compared against the bounds 0 and 1. If set to true, this will most likely results that are only
* qualitatively correct, i.e. do not represent the correct value, but only the correct relation with respect to the
* bounds 0 and 1.
* @returns The probabilities for the given formula to hold on every state of the model associated with this model
* checker. If the qualitative flag is set, exact probabilities might not be computed.
*/
virtual std::vector<Type>* checkGlobally(const storm::property::prctl::Globally<Type>& formula, bool qualitative) const {
// Create "equivalent" temporary eventually formula and check it.
storm::property::prctl::Eventually<Type> temporaryEventuallyFormula(new storm::property::prctl::Not<Type>(formula.getChild().clone()));
std::vector<Type>* result = this->checkEventually(temporaryEventuallyFormula, qualitative);
// Now subtract the resulting vector from the constant one vector to obtain final result.
storm::utility::vector::subtractFromConstantOneVector(*result);
return result;
}
/*!
* Check the given formula that is an until formula.
*
* @param formula The formula to check.
* @param qualitative A flag indicating whether the formula only needs to be evaluated qualitatively, i.e. if the
* results are only compared against the bounds 0 and 1. If set to true, this will most likely results that are only
* qualitatively correct, i.e. do not represent the correct value, but only the correct relation with respect to the
* bounds 0 and 1.
* @returns The probabilities for the given formula to hold on every state of the model associated with this model
* checker. If the qualitative flag is set, exact probabilities might not be computed.
*/
virtual std::vector<Type>* checkUntil(const storm::property::prctl::Until<Type>& formula, bool qualitative) const {
// First, we need to compute the states that satisfy the sub-formulas of the until-formula.
storm::storage::BitVector* leftStates = formula.getLeft().check(*this);
storm::storage::BitVector* rightStates = formula.getRight().check(*this);
// Then, we need to identify the states which have to be taken out of the matrix, i.e.
// all states that have probability 0 and 1 of satisfying the until-formula.
std::pair<storm::storage::BitVector, storm::storage::BitVector> statesWithProbability01;
if (this->minimumOperatorStack.top()) {
statesWithProbability01 = storm::utility::graph::performProb01Min(this->getModel(), *leftStates, *rightStates);
} else {
statesWithProbability01 = storm::utility::graph::performProb01Max(this->getModel(), *leftStates, *rightStates);
}
storm::storage::BitVector statesWithProbability0 = std::move(statesWithProbability01.first);
storm::storage::BitVector statesWithProbability1 = std::move(statesWithProbability01.second);
// Delete sub-results that are obsolete now.
delete leftStates;
delete rightStates;
storm::storage::BitVector maybeStates = ~(statesWithProbability0 | statesWithProbability1);
LOG4CPLUS_INFO(logger, "Found " << statesWithProbability0.getNumberOfSetBits() << " 'no' states.");
LOG4CPLUS_INFO(logger, "Found " << statesWithProbability1.getNumberOfSetBits() << " 'yes' states.");
LOG4CPLUS_INFO(logger, "Found " << maybeStates.getNumberOfSetBits() << " 'maybe' states.");
// Create resulting vector.
std::vector<Type>* result = new std::vector<Type>(this->getModel().getNumberOfStates());
// Check whether we need to compute exact probabilities for some states.
if (this->getInitialStates().isDisjointFrom(maybeStates) || qualitative) {
if (qualitative) {
LOG4CPLUS_INFO(logger, "The formula was checked qualitatively. No exact probabilities were computed.");
} else {
LOG4CPLUS_INFO(logger, "The probabilities for the initial states were determined in a preprocessing step."
<< " No exact probabilities were computed.");
}
// Set the values for all maybe-states to 0.5 to indicate that their probability values
// are neither 0 nor 1.
storm::utility::vector::setVectorValues<Type>(*result, maybeStates, Type(0.5));
} else {
// In this case we have have to compute the probabilities.
// First, we can eliminate the rows and columns from the original transition probability matrix for states
// whose probabilities are already known.
storm::storage::SparseMatrix<Type> submatrix = this->getModel().getTransitionMatrix().getSubmatrix(maybeStates, this->getModel().getNondeterministicChoiceIndices());
// Get the "new" nondeterministic choice indices for the submatrix.
std::vector<uint_fast64_t> subNondeterministicChoiceIndices = this->computeNondeterministicChoiceIndicesForConstraint(maybeStates);
// Create vector for results for maybe states.
std::vector<Type> x(maybeStates.getNumberOfSetBits());
// Prepare the right-hand side of the equation system. For entry i this corresponds to
// the accumulated probability of going from state i to some 'yes' state.
std::vector<Type> b = this->getModel().getTransitionMatrix().getConstrainedRowSumVector(maybeStates, this->getModel().getNondeterministicChoiceIndices(), statesWithProbability1, submatrix.getRowCount());
// Solve the corresponding system of equations.
this->solveEquationSystem(submatrix, x, b, subNondeterministicChoiceIndices);
// Set values of resulting vector according to result.
storm::utility::vector::setVectorValues<Type>(*result, maybeStates, x);
}
// Set values of resulting vector that are known exactly.
storm::utility::vector::setVectorValues<Type>(*result, statesWithProbability0, storm::utility::constGetZero<Type>());
storm::utility::vector::setVectorValues<Type>(*result, statesWithProbability1, storm::utility::constGetOne<Type>());
return result;
}
/*!
* Checks the given formula that is an instantaneous reward formula.
*
* @param formula The formula to check.
* @param qualitative A flag indicating whether the formula only needs to be evaluated qualitatively, i.e. if the
* results are only compared against the bound 0. If set to true, this will most likely results that are only
* qualitatively correct, i.e. do not represent the correct value, but only the correct relation with respect to the
* bound 0.
* @returns The reward values for the given formula for every state of the model associated with this model
* checker. If the qualitative flag is set, exact values might not be computed.
*/
virtual std::vector<Type>* checkInstantaneousReward(const storm::property::prctl::InstantaneousReward<Type>& formula, bool qualitative) const {
// Only compute the result if the model has a state-based reward model.
if (!this->getModel().hasStateRewards()) {
LOG4CPLUS_ERROR(logger, "Missing (state-based) reward model for formula.");
throw storm::exceptions::InvalidPropertyException() << "Missing (state-based) reward model for formula.";
}
// Initialize result to state rewards of the model.
std::vector<Type>* result = new std::vector<Type>(this->getModel().getStateRewardVector());
this->performMatrixVectorMultiplication(this->getModel().getTransitionMatrix(), *result, this->getModel().getNondeterministicChoiceIndices(), nullptr, formula.getBound());
// Return result.
return result;
}
/*!
* Check the given formula that is a cumulative reward formula.
*
* @param formula The formula to check.
* @param qualitative A flag indicating whether the formula only needs to be evaluated qualitatively, i.e. if the
* results are only compared against the bound 0. If set to true, this will most likely results that are only
* qualitatively correct, i.e. do not represent the correct value, but only the correct relation with respect to the
* bound 0.
* @returns The reward values for the given formula for every state of the model associated with this model
* checker. If the qualitative flag is set, exact values might not be computed.
*/
virtual std::vector<Type>* checkCumulativeReward(const storm::property::prctl::CumulativeReward<Type>& formula, bool qualitative) const {
// Only compute the result if the model has at least one reward model.
if (!this->getModel().hasStateRewards() && !this->getModel().hasTransitionRewards()) {
LOG4CPLUS_ERROR(logger, "Missing reward model for formula.");
throw storm::exceptions::InvalidPropertyException() << "Missing reward model for formula.";
}
// Compute the reward vector to add in each step based on the available reward models.
std::vector<Type> totalRewardVector;
if (this->getModel().hasTransitionRewards()) {
totalRewardVector = this->getModel().getTransitionMatrix().getPointwiseProductRowSumVector(this->getModel().getTransitionRewardMatrix());
if (this->getModel().hasStateRewards()) {
storm::utility::vector::addVectorsInPlace(totalRewardVector, this->getModel().getStateRewardVector());
}
} else {
totalRewardVector = std::vector<Type>(this->getModel().getStateRewardVector());
}
// Initialize result to either the state rewards of the model or the null vector.
std::vector<Type>* result = nullptr;
if (this->getModel().hasStateRewards()) {
result = new std::vector<Type>(this->getModel().getStateRewardVector());
} else {
result = new std::vector<Type>(this->getModel().getNumberOfStates());
}
this->performMatrixVectorMultiplication(this->getModel().getTransitionMatrix(), *result, this->getModel().getNondeterministicChoiceIndices(), &totalRewardVector, formula.getBound());
// Delete temporary variables and return result.
return result;
}
/*!
* Checks the given formula that is a reachability reward formula.
*
* @param formula The formula to check.
* @param qualitative A flag indicating whether the formula only needs to be evaluated qualitatively, i.e. if the
* results are only compared against the bound 0. If set to true, this will most likely results that are only
* qualitatively correct, i.e. do not represent the correct value, but only the correct relation with respect to the
* bound 0.
* @returns The reward values for the given formula for every state of the model associated with this model
* checker. If the qualitative flag is set, exact values might not be computed.
*/
virtual std::vector<Type>* checkReachabilityReward(const storm::property::prctl::ReachabilityReward<Type>& formula, bool qualitative) const {
// Only compute the result if the model has at least one reward model.
if (!this->getModel().hasStateRewards() && !this->getModel().hasTransitionRewards()) {
LOG4CPLUS_ERROR(logger, "Missing reward model for formula. Skipping formula");
throw storm::exceptions::InvalidPropertyException() << "Missing reward model for formula.";
}
// Determine the states for which the target predicate holds.
storm::storage::BitVector* targetStates = formula.getChild().check(*this);
// Determine which states have a reward of infinity by definition.
storm::storage::BitVector infinityStates;
storm::storage::BitVector trueStates(this->getModel().getNumberOfStates(), true);
if (this->minimumOperatorStack.top()) {
infinityStates = storm::utility::graph::performProb1A(this->getModel(), this->getModel().getBackwardTransitions(), trueStates, *targetStates);
} else {
infinityStates = storm::utility::graph::performProb1E(this->getModel(), this->getModel().getBackwardTransitions(), trueStates, *targetStates);
}
infinityStates.complement();
storm::storage::BitVector maybeStates = ~(*targetStates) & ~infinityStates;
LOG4CPLUS_INFO(logger, "Found " << infinityStates.getNumberOfSetBits() << " 'infinity' states.");
LOG4CPLUS_INFO(logger, "Found " << targetStates->getNumberOfSetBits() << " 'target' states.");
LOG4CPLUS_INFO(logger, "Found " << maybeStates.getNumberOfSetBits() << " 'maybe' states.");
// Create resulting vector.
std::vector<Type>* result = new std::vector<Type>(this->getModel().getNumberOfStates());
// Check whether we need to compute exact rewards for some states.
if (this->getInitialStates().isDisjointFrom(maybeStates)) {
LOG4CPLUS_INFO(logger, "The rewards for the initial states were determined in a preprocessing step."
<< " No exact rewards were computed.");
// Set the values for all maybe-states to 1 to indicate that their reward values
// are neither 0 nor infinity.
storm::utility::vector::setVectorValues<Type>(*result, maybeStates, storm::utility::constGetOne<Type>());
} else {
// In this case we have to compute the reward values for the remaining states.
// We can eliminate the rows and columns from the original transition probability matrix for states
// whose reward values are already known.
storm::storage::SparseMatrix<Type> submatrix = this->getModel().getTransitionMatrix().getSubmatrix(maybeStates, this->getModel().getNondeterministicChoiceIndices());
// Get the "new" nondeterministic choice indices for the submatrix.
std::vector<uint_fast64_t> subNondeterministicChoiceIndices = this->computeNondeterministicChoiceIndicesForConstraint(maybeStates);
// Create vector for results for maybe states.
std::vector<Type> x(submatrix.getRowCount());
// Prepare the right-hand side of the equation system. For entry i this corresponds to
// the accumulated probability of going from state i to some 'yes' state.
std::vector<Type> b(submatrix.getRowCount());
if (this->getModel().hasTransitionRewards()) {
// If a transition-based reward model is available, we initialize the right-hand
// side to the vector resulting from summing the rows of the pointwise product
// of the transition probability matrix and the transition reward matrix.
std::vector<Type> pointwiseProductRowSumVector = this->getModel().getTransitionMatrix().getPointwiseProductRowSumVector(this->getModel().getTransitionRewardMatrix());
storm::utility::vector::selectVectorValues(b, maybeStates, this->getModel().getNondeterministicChoiceIndices(), pointwiseProductRowSumVector);
if (this->getModel().hasStateRewards()) {
// If a state-based reward model is also available, we need to add this vector
// as well. As the state reward vector contains entries not just for the states
// that we still consider (i.e. maybeStates), we need to extract these values
// first.
std::vector<Type> subStateRewards(b.size());
storm::utility::vector::selectVectorValuesRepeatedly(subStateRewards, maybeStates, this->getModel().getNondeterministicChoiceIndices(), this->getModel().getStateRewardVector());
storm::utility::vector::addVectorsInPlace(b, subStateRewards);
}
} else {
// If only a state-based reward model is available, we take this vector as the
// right-hand side. As the state reward vector contains entries not just for the
// states that we still consider (i.e. maybeStates), we need to extract these values
// first.
storm::utility::vector::selectVectorValuesRepeatedly(b, maybeStates, this->getModel().getNondeterministicChoiceIndices(), this->getModel().getStateRewardVector());
}
// Solve the corresponding system of equations.
this->solveEquationSystem(submatrix, x, b, subNondeterministicChoiceIndices);
// Set values of resulting vector according to result.
storm::utility::vector::setVectorValues<Type>(*result, maybeStates, x);
}
// Set values of resulting vector that are known exactly.
storm::utility::vector::setVectorValues(*result, *targetStates, storm::utility::constGetZero<Type>());
storm::utility::vector::setVectorValues(*result, infinityStates, storm::utility::constGetInfinity<Type>());
// Delete temporary storages and return result.
delete targetStates;
return result;
}
protected:
/*!
* A stack used for storing whether we are currently computing min or max probabilities or rewards, respectively.
* The topmost element is true if and only if we are currently computing minimum probabilities or rewards.
*/
mutable std::stack<bool> minimumOperatorStack;
private:
/*!
* Performs (repeated) matrix-vector multiplication with the given parameters, i.e. computes x[i+1] = A*x[i] + b
* until x[n], where x[0] = x.
*
* @param A The matrix that is to be multiplied against the vector.
* @param x The initial vector that is to be multiplied against the matrix. This is also the output parameter,
* i.e. after the method returns, this vector will contain the computed values.
* @param nondeterministicChoiceIndices The assignment of states to their rows in the matrix.
* @param b If not null, this vector is being added to the result after each matrix-vector multiplication.
* @param n Specifies the number of iterations the matrix-vector multiplication is performed.
* @returns The result of the repeated matrix-vector multiplication as the content of the parameter vector.
*/
virtual void performMatrixVectorMultiplication(storm::storage::SparseMatrix<Type> const& A, std::vector<Type>& x, std::vector<uint_fast64_t> const& nondeterministicChoiceIndices, std::vector<Type>* b = nullptr, uint_fast64_t n = 1) const {
// Create vector for result of multiplication, which is reduced to the result vector after
// each multiplication.
std::vector<Type> multiplyResult(A.getRowCount());
// Now perform matrix-vector multiplication as long as we meet the bound of the formula.
for (uint_fast64_t i = 0; i < n; ++i) {
A.multiplyWithVector(x, multiplyResult);
// Add b if it is non-null.
if (b != nullptr) {
storm::utility::vector::addVectorsInPlace(multiplyResult, *b);
}
// Reduce the vector x' by applying min/max for all non-deterministic choices as given by the topmost
// element of the min/max operator stack.
if (this->minimumOperatorStack.top()) {
storm::utility::vector::reduceVectorMin(multiplyResult, x, nondeterministicChoiceIndices);
} else {
storm::utility::vector::reduceVectorMax(multiplyResult, x, nondeterministicChoiceIndices);
}
}
}
/*!
* Solves the equation system A*x = b given by the parameters.
*
* @param A The matrix specifying the coefficients of the linear equations.
* @param x The solution vector x. The initial values of x represent a guess of the real values to the solver, but
* may be ignored.
* @param b The right-hand side of the equation system.
* @param nondeterministicChoiceIndices The assignment of states to their rows in the matrix.
* @returns The solution vector x of the system of linear equations as the content of the parameter x.
*/
virtual void solveEquationSystem(storm::storage::SparseMatrix<Type> const& A, std::vector<Type>& x, std::vector<Type> const& b, std::vector<uint_fast64_t> const& nondeterministicChoiceIndices) const {
// Get the settings object to customize solving.
storm::settings::Settings* s = storm::settings::instance();
// Get relevant user-defined settings for solving the equations.
double precision = s->get<double>("precision");
unsigned maxIterations = s->get<unsigned>("maxiter");
bool relative = s->get<bool>("relative");
// Set up the environment for the power method.
std::vector<Type> multiplyResult(A.getRowCount());
std::vector<Type>* currentX = &x;
std::vector<Type>* newX = new std::vector<Type>(x.size());
std::vector<Type>* swap = nullptr;
uint_fast64_t iterations = 0;
bool converged = false;
// Proceed with the iterations as long as the method did not converge or reach the
// user-specified maximum number of iterations.
while (!converged && iterations < maxIterations) {
// Compute x' = A*x + b.
A.multiplyWithVector(*currentX, multiplyResult);
storm::utility::vector::addVectorsInPlace(multiplyResult, b);
// Reduce the vector x' by applying min/max for all non-deterministic choices as given by the topmost
// element of the min/max operator stack.
if (this->minimumOperatorStack.top()) {
storm::utility::vector::reduceVectorMin(multiplyResult, *newX, nondeterministicChoiceIndices);
} else {
storm::utility::vector::reduceVectorMax(multiplyResult, *newX, nondeterministicChoiceIndices);
}
// Determine whether the method converged.
converged = storm::utility::vector::equalModuloPrecision(*currentX, *newX, precision, relative);
// Update environment variables.
swap = currentX;
currentX = newX;
newX = swap;
++iterations;
}
// If we performed an odd number of iterations, we need to swap the x and currentX, because the newest result
// is currently stored in currentX, but x is the output vector.
if (iterations % 2 == 1) {
std::swap(x, *currentX);
delete currentX;
} else {
delete newX;
}
// Check if the solver converged and issue a warning otherwise.
if (converged) {
LOG4CPLUS_INFO(logger, "Iterative solver converged after " << iterations << " iterations.");
} else {
LOG4CPLUS_WARN(logger, "Iterative solver did not converge.");
}
}
/*!
* Computes the nondeterministic choice indices vector resulting from reducing the full system to the states given
* by the parameter constraint.
*
* @param constraint A bit vector specifying which states are kept.
* @returns A vector of the nondeterministic choice indices of the subsystem induced by the given constraint.
*/
std::vector<uint_fast64_t> computeNondeterministicChoiceIndicesForConstraint(storm::storage::BitVector const& constraint) const {
// First, get a reference to the full nondeterministic choice indices.
std::vector<uint_fast64_t> const& nondeterministicChoiceIndices = this->getModel().getNondeterministicChoiceIndices();
// Reserve the known amount of slots for the resulting vector.
std::vector<uint_fast64_t> subNondeterministicChoiceIndices(constraint.getNumberOfSetBits() + 1);
uint_fast64_t currentRowCount = 0;
uint_fast64_t currentIndexCount = 1;
// Set the first element as this will clearly begin at offset 0.
subNondeterministicChoiceIndices[0] = 0;
// Loop over all states that need to be kept and copy the relative indices of the nondeterministic choices over
// to the resulting vector.
for (auto index : constraint) {
subNondeterministicChoiceIndices[currentIndexCount] = currentRowCount + nondeterministicChoiceIndices[index + 1] - nondeterministicChoiceIndices[index];
currentRowCount += nondeterministicChoiceIndices[index + 1] - nondeterministicChoiceIndices[index];
++currentIndexCount;
}
// Put a sentinel element at the end.
subNondeterministicChoiceIndices[constraint.getNumberOfSetBits()] = currentRowCount;
return subNondeterministicChoiceIndices;
}
};
} // namespace prctl
} // namespace modelchecker
} // namespace storm
#endif /* STORM_MODELCHECKER_PRCTL_SPARSEMDPPRCTLMODELCHECKER_H_ */