You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							249 lines
						
					
					
						
							8.5 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							249 lines
						
					
					
						
							8.5 KiB
						
					
					
				| // This file is part of Eigen, a lightweight C++ template library | |
| // for linear algebra. | |
| // | |
| // Copyright (C) 2011 Benoit Jacob <jacob.benoit.1@gmail.com> | |
| // Copyright (C) 2015 Gael Guennebaud <gael.guennebaud@inria.fr> | |
| // | |
| // This Source Code Form is subject to the terms of the Mozilla | |
| // Public License v. 2.0. If a copy of the MPL was not distributed | |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | |
|  | |
| #define TEST_ENABLE_TEMPORARY_TRACKING | |
| #define EIGEN_NO_STATIC_ASSERT | |
|  | |
| #include "main.h" | |
|  | |
| template<typename ArrayType> void vectorwiseop_array(const ArrayType& m) | |
| { | |
|   typedef typename ArrayType::Index Index; | |
|   typedef typename ArrayType::Scalar Scalar; | |
|   typedef Array<Scalar, ArrayType::RowsAtCompileTime, 1> ColVectorType; | |
|   typedef Array<Scalar, 1, ArrayType::ColsAtCompileTime> RowVectorType; | |
| 
 | |
|   Index rows = m.rows(); | |
|   Index cols = m.cols(); | |
|   Index r = internal::random<Index>(0, rows-1), | |
|         c = internal::random<Index>(0, cols-1); | |
| 
 | |
|   ArrayType m1 = ArrayType::Random(rows, cols), | |
|             m2(rows, cols), | |
|             m3(rows, cols); | |
| 
 | |
|   ColVectorType colvec = ColVectorType::Random(rows); | |
|   RowVectorType rowvec = RowVectorType::Random(cols); | |
| 
 | |
|   // test addition | |
|  | |
|   m2 = m1; | |
|   m2.colwise() += colvec; | |
|   VERIFY_IS_APPROX(m2, m1.colwise() + colvec); | |
|   VERIFY_IS_APPROX(m2.col(c), m1.col(c) + colvec); | |
| 
 | |
|   VERIFY_RAISES_ASSERT(m2.colwise() += colvec.transpose()); | |
|   VERIFY_RAISES_ASSERT(m1.colwise() + colvec.transpose()); | |
| 
 | |
|   m2 = m1; | |
|   m2.rowwise() += rowvec; | |
|   VERIFY_IS_APPROX(m2, m1.rowwise() + rowvec); | |
|   VERIFY_IS_APPROX(m2.row(r), m1.row(r) + rowvec); | |
| 
 | |
|   VERIFY_RAISES_ASSERT(m2.rowwise() += rowvec.transpose()); | |
|   VERIFY_RAISES_ASSERT(m1.rowwise() + rowvec.transpose()); | |
| 
 | |
|   // test substraction | |
|  | |
|   m2 = m1; | |
|   m2.colwise() -= colvec; | |
|   VERIFY_IS_APPROX(m2, m1.colwise() - colvec); | |
|   VERIFY_IS_APPROX(m2.col(c), m1.col(c) - colvec); | |
| 
 | |
|   VERIFY_RAISES_ASSERT(m2.colwise() -= colvec.transpose()); | |
|   VERIFY_RAISES_ASSERT(m1.colwise() - colvec.transpose()); | |
| 
 | |
|   m2 = m1; | |
|   m2.rowwise() -= rowvec; | |
|   VERIFY_IS_APPROX(m2, m1.rowwise() - rowvec); | |
|   VERIFY_IS_APPROX(m2.row(r), m1.row(r) - rowvec); | |
| 
 | |
|   VERIFY_RAISES_ASSERT(m2.rowwise() -= rowvec.transpose()); | |
|   VERIFY_RAISES_ASSERT(m1.rowwise() - rowvec.transpose()); | |
| 
 | |
|   // test multiplication | |
|  | |
|   m2 = m1; | |
|   m2.colwise() *= colvec; | |
|   VERIFY_IS_APPROX(m2, m1.colwise() * colvec); | |
|   VERIFY_IS_APPROX(m2.col(c), m1.col(c) * colvec); | |
| 
 | |
|   VERIFY_RAISES_ASSERT(m2.colwise() *= colvec.transpose()); | |
|   VERIFY_RAISES_ASSERT(m1.colwise() * colvec.transpose()); | |
| 
 | |
|   m2 = m1; | |
|   m2.rowwise() *= rowvec; | |
|   VERIFY_IS_APPROX(m2, m1.rowwise() * rowvec); | |
|   VERIFY_IS_APPROX(m2.row(r), m1.row(r) * rowvec); | |
| 
 | |
|   VERIFY_RAISES_ASSERT(m2.rowwise() *= rowvec.transpose()); | |
|   VERIFY_RAISES_ASSERT(m1.rowwise() * rowvec.transpose()); | |
| 
 | |
|   // test quotient | |
|  | |
|   m2 = m1; | |
|   m2.colwise() /= colvec; | |
|   VERIFY_IS_APPROX(m2, m1.colwise() / colvec); | |
|   VERIFY_IS_APPROX(m2.col(c), m1.col(c) / colvec); | |
| 
 | |
|   VERIFY_RAISES_ASSERT(m2.colwise() /= colvec.transpose()); | |
|   VERIFY_RAISES_ASSERT(m1.colwise() / colvec.transpose()); | |
| 
 | |
|   m2 = m1; | |
|   m2.rowwise() /= rowvec; | |
|   VERIFY_IS_APPROX(m2, m1.rowwise() / rowvec); | |
|   VERIFY_IS_APPROX(m2.row(r), m1.row(r) / rowvec); | |
| 
 | |
|   VERIFY_RAISES_ASSERT(m2.rowwise() /= rowvec.transpose()); | |
|   VERIFY_RAISES_ASSERT(m1.rowwise() / rowvec.transpose()); | |
| 
 | |
|   m2 = m1; | |
|   // yes, there might be an aliasing issue there but ".rowwise() /=" | |
|   // is supposed to evaluate " m2.colwise().sum()" into a temporary to avoid | |
|   // evaluating the reduction multiple times | |
|   if(ArrayType::RowsAtCompileTime>2 || ArrayType::RowsAtCompileTime==Dynamic) | |
|   { | |
|     m2.rowwise() /= m2.colwise().sum(); | |
|     VERIFY_IS_APPROX(m2, m1.rowwise() / m1.colwise().sum()); | |
|   } | |
| 
 | |
|   // all/any | |
|   Array<bool,Dynamic,Dynamic> mb(rows,cols); | |
|   mb = (m1.real()<=0.7).colwise().all(); | |
|   VERIFY( (mb.col(c) == (m1.real().col(c)<=0.7).all()).all() ); | |
|   mb = (m1.real()<=0.7).rowwise().all(); | |
|   VERIFY( (mb.row(r) == (m1.real().row(r)<=0.7).all()).all() ); | |
| 
 | |
|   mb = (m1.real()>=0.7).colwise().any(); | |
|   VERIFY( (mb.col(c) == (m1.real().col(c)>=0.7).any()).all() ); | |
|   mb = (m1.real()>=0.7).rowwise().any(); | |
|   VERIFY( (mb.row(r) == (m1.real().row(r)>=0.7).any()).all() ); | |
| } | |
| 
 | |
| template<typename MatrixType> void vectorwiseop_matrix(const MatrixType& m) | |
| { | |
|   typedef typename MatrixType::Index Index; | |
|   typedef typename MatrixType::Scalar Scalar; | |
|   typedef typename NumTraits<Scalar>::Real RealScalar; | |
|   typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> ColVectorType; | |
|   typedef Matrix<Scalar, 1, MatrixType::ColsAtCompileTime> RowVectorType; | |
|   typedef Matrix<RealScalar, MatrixType::RowsAtCompileTime, 1> RealColVectorType; | |
|   typedef Matrix<RealScalar, 1, MatrixType::ColsAtCompileTime> RealRowVectorType; | |
| 
 | |
|   Index rows = m.rows(); | |
|   Index cols = m.cols(); | |
|   Index r = internal::random<Index>(0, rows-1), | |
|         c = internal::random<Index>(0, cols-1); | |
| 
 | |
|   MatrixType m1 = MatrixType::Random(rows, cols), | |
|             m2(rows, cols), | |
|             m3(rows, cols); | |
| 
 | |
|   ColVectorType colvec = ColVectorType::Random(rows); | |
|   RowVectorType rowvec = RowVectorType::Random(cols); | |
|   RealColVectorType rcres; | |
|   RealRowVectorType rrres; | |
| 
 | |
|   // test addition | |
|  | |
|   m2 = m1; | |
|   m2.colwise() += colvec; | |
|   VERIFY_IS_APPROX(m2, m1.colwise() + colvec); | |
|   VERIFY_IS_APPROX(m2.col(c), m1.col(c) + colvec); | |
| 
 | |
|   if(rows>1) | |
|   { | |
|     VERIFY_RAISES_ASSERT(m2.colwise() += colvec.transpose()); | |
|     VERIFY_RAISES_ASSERT(m1.colwise() + colvec.transpose()); | |
|   } | |
| 
 | |
|   m2 = m1; | |
|   m2.rowwise() += rowvec; | |
|   VERIFY_IS_APPROX(m2, m1.rowwise() + rowvec); | |
|   VERIFY_IS_APPROX(m2.row(r), m1.row(r) + rowvec); | |
| 
 | |
|   if(cols>1) | |
|   { | |
|     VERIFY_RAISES_ASSERT(m2.rowwise() += rowvec.transpose()); | |
|     VERIFY_RAISES_ASSERT(m1.rowwise() + rowvec.transpose()); | |
|   } | |
| 
 | |
|   // test substraction | |
|  | |
|   m2 = m1; | |
|   m2.colwise() -= colvec; | |
|   VERIFY_IS_APPROX(m2, m1.colwise() - colvec); | |
|   VERIFY_IS_APPROX(m2.col(c), m1.col(c) - colvec); | |
| 
 | |
|   if(rows>1) | |
|   { | |
|     VERIFY_RAISES_ASSERT(m2.colwise() -= colvec.transpose()); | |
|     VERIFY_RAISES_ASSERT(m1.colwise() - colvec.transpose()); | |
|   } | |
| 
 | |
|   m2 = m1; | |
|   m2.rowwise() -= rowvec; | |
|   VERIFY_IS_APPROX(m2, m1.rowwise() - rowvec); | |
|   VERIFY_IS_APPROX(m2.row(r), m1.row(r) - rowvec); | |
| 
 | |
|   if(cols>1) | |
|   { | |
|     VERIFY_RAISES_ASSERT(m2.rowwise() -= rowvec.transpose()); | |
|     VERIFY_RAISES_ASSERT(m1.rowwise() - rowvec.transpose()); | |
|   } | |
| 
 | |
|   // test norm | |
|   rrres = m1.colwise().norm(); | |
|   VERIFY_IS_APPROX(rrres(c), m1.col(c).norm()); | |
|   rcres = m1.rowwise().norm(); | |
|   VERIFY_IS_APPROX(rcres(r), m1.row(r).norm()); | |
| 
 | |
|   VERIFY_IS_APPROX(m1.cwiseAbs().colwise().sum(), m1.colwise().template lpNorm<1>()); | |
|   VERIFY_IS_APPROX(m1.cwiseAbs().rowwise().sum(), m1.rowwise().template lpNorm<1>()); | |
|   VERIFY_IS_APPROX(m1.cwiseAbs().colwise().maxCoeff(), m1.colwise().template lpNorm<Infinity>()); | |
|   VERIFY_IS_APPROX(m1.cwiseAbs().rowwise().maxCoeff(), m1.rowwise().template lpNorm<Infinity>()); | |
| 
 | |
|   // test normalized | |
|   m2 = m1.colwise().normalized(); | |
|   VERIFY_IS_APPROX(m2.col(c), m1.col(c).normalized()); | |
|   m2 = m1.rowwise().normalized(); | |
|   VERIFY_IS_APPROX(m2.row(r), m1.row(r).normalized()); | |
| 
 | |
|   // test normalize | |
|   m2 = m1; | |
|   m2.colwise().normalize(); | |
|   VERIFY_IS_APPROX(m2.col(c), m1.col(c).normalized()); | |
|   m2 = m1; | |
|   m2.rowwise().normalize(); | |
|   VERIFY_IS_APPROX(m2.row(r), m1.row(r).normalized()); | |
| 
 | |
|   // test with partial reduction of products | |
|   Matrix<Scalar,MatrixType::RowsAtCompileTime,MatrixType::RowsAtCompileTime> m1m1 = m1 * m1.transpose(); | |
|   VERIFY_IS_APPROX( (m1 * m1.transpose()).colwise().sum(), m1m1.colwise().sum()); | |
|   Matrix<Scalar,1,MatrixType::RowsAtCompileTime> tmp(rows); | |
|   VERIFY_EVALUATION_COUNT( tmp = (m1 * m1.transpose()).colwise().sum(), (MatrixType::RowsAtCompileTime==Dynamic ? 1 : 0)); | |
| 
 | |
|   m2 = m1.rowwise() - (m1.colwise().sum()/m1.rows()).eval(); | |
|   m1 = m1.rowwise() - (m1.colwise().sum()/m1.rows()); | |
|   VERIFY_IS_APPROX( m1, m2 ); | |
|   VERIFY_EVALUATION_COUNT( m2 = (m1.rowwise() - m1.colwise().sum()/m1.rows()), (MatrixType::RowsAtCompileTime==Dynamic && MatrixType::ColsAtCompileTime!=1 ? 1 : 0) ); | |
| } | |
| 
 | |
| void test_vectorwiseop() | |
| { | |
|   CALL_SUBTEST_1( vectorwiseop_array(Array22cd()) ); | |
|   CALL_SUBTEST_2( vectorwiseop_array(Array<double, 3, 2>()) ); | |
|   CALL_SUBTEST_3( vectorwiseop_array(ArrayXXf(3, 4)) ); | |
|   CALL_SUBTEST_4( vectorwiseop_matrix(Matrix4cf()) ); | |
|   CALL_SUBTEST_5( vectorwiseop_matrix(Matrix<float,4,5>()) ); | |
|   CALL_SUBTEST_6( vectorwiseop_matrix(MatrixXd(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); | |
|   CALL_SUBTEST_7( vectorwiseop_matrix(VectorXd(internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); | |
|   CALL_SUBTEST_7( vectorwiseop_matrix(RowVectorXd(internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); | |
| }
 |