You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							531 lines
						
					
					
						
							19 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							531 lines
						
					
					
						
							19 KiB
						
					
					
				| // This file is part of Eigen, a lightweight C++ template library | |
| // for linear algebra. | |
| // | |
| // Copyright (C) 2008-2011 Gael Guennebaud <gael.guennebaud@inria.fr> | |
| // Copyright (C) 2008 Daniel Gomez Ferro <dgomezferro@gmail.com> | |
| // Copyright (C) 2013 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr> | |
| // | |
| // This Source Code Form is subject to the terms of the Mozilla | |
| // Public License v. 2.0. If a copy of the MPL was not distributed | |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | |
|  | |
| static long g_realloc_count = 0; | |
| #define EIGEN_SPARSE_COMPRESSED_STORAGE_REALLOCATE_PLUGIN g_realloc_count++; | |
|  | |
| #include "sparse.h" | |
|  | |
| template<typename SparseMatrixType> void sparse_basic(const SparseMatrixType& ref) | |
| { | |
|   typedef typename SparseMatrixType::StorageIndex StorageIndex; | |
|   typedef Matrix<StorageIndex,2,1> Vector2; | |
|    | |
|   const Index rows = ref.rows(); | |
|   const Index cols = ref.cols(); | |
|   const Index inner = ref.innerSize(); | |
|   const Index outer = ref.outerSize(); | |
| 
 | |
|   typedef typename SparseMatrixType::Scalar Scalar; | |
|   enum { Flags = SparseMatrixType::Flags }; | |
| 
 | |
|   double density = (std::max)(8./(rows*cols), 0.01); | |
|   typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix; | |
|   typedef Matrix<Scalar,Dynamic,1> DenseVector; | |
|   Scalar eps = 1e-6; | |
| 
 | |
|   Scalar s1 = internal::random<Scalar>(); | |
|   { | |
|     SparseMatrixType m(rows, cols); | |
|     DenseMatrix refMat = DenseMatrix::Zero(rows, cols); | |
|     DenseVector vec1 = DenseVector::Random(rows); | |
| 
 | |
|     std::vector<Vector2> zeroCoords; | |
|     std::vector<Vector2> nonzeroCoords; | |
|     initSparse<Scalar>(density, refMat, m, 0, &zeroCoords, &nonzeroCoords); | |
| 
 | |
|     // test coeff and coeffRef | |
|     for (std::size_t i=0; i<zeroCoords.size(); ++i) | |
|     { | |
|       VERIFY_IS_MUCH_SMALLER_THAN( m.coeff(zeroCoords[i].x(),zeroCoords[i].y()), eps ); | |
|       if(internal::is_same<SparseMatrixType,SparseMatrix<Scalar,Flags> >::value) | |
|         VERIFY_RAISES_ASSERT( m.coeffRef(zeroCoords[i].x(),zeroCoords[i].y()) = 5 ); | |
|     } | |
|     VERIFY_IS_APPROX(m, refMat); | |
| 
 | |
|     if(!nonzeroCoords.empty()) { | |
|       m.coeffRef(nonzeroCoords[0].x(), nonzeroCoords[0].y()) = Scalar(5); | |
|       refMat.coeffRef(nonzeroCoords[0].x(), nonzeroCoords[0].y()) = Scalar(5); | |
|     } | |
| 
 | |
|     VERIFY_IS_APPROX(m, refMat); | |
| 
 | |
|       // test assertion | |
|       VERIFY_RAISES_ASSERT( m.coeffRef(-1,1) = 0 ); | |
|       VERIFY_RAISES_ASSERT( m.coeffRef(0,m.cols()) = 0 ); | |
|     } | |
| 
 | |
|     // test insert (inner random) | |
|     { | |
|       DenseMatrix m1(rows,cols); | |
|       m1.setZero(); | |
|       SparseMatrixType m2(rows,cols); | |
|       bool call_reserve = internal::random<int>()%2; | |
|       Index nnz = internal::random<int>(1,int(rows)/2); | |
|       if(call_reserve) | |
|       { | |
|         if(internal::random<int>()%2) | |
|           m2.reserve(VectorXi::Constant(m2.outerSize(), int(nnz))); | |
|         else | |
|           m2.reserve(m2.outerSize() * nnz); | |
|       } | |
|       g_realloc_count = 0; | |
|       for (Index j=0; j<cols; ++j) | |
|       { | |
|         for (Index k=0; k<nnz; ++k) | |
|         { | |
|           Index i = internal::random<Index>(0,rows-1); | |
|           if (m1.coeff(i,j)==Scalar(0)) | |
|             m2.insert(i,j) = m1(i,j) = internal::random<Scalar>(); | |
|         } | |
|       } | |
|        | |
|       if(call_reserve && !SparseMatrixType::IsRowMajor) | |
|       { | |
|         VERIFY(g_realloc_count==0); | |
|       } | |
|        | |
|       m2.finalize(); | |
|       VERIFY_IS_APPROX(m2,m1); | |
|     } | |
| 
 | |
|     // test insert (fully random) | |
|     { | |
|       DenseMatrix m1(rows,cols); | |
|       m1.setZero(); | |
|       SparseMatrixType m2(rows,cols); | |
|       if(internal::random<int>()%2) | |
|         m2.reserve(VectorXi::Constant(m2.outerSize(), 2)); | |
|       for (int k=0; k<rows*cols; ++k) | |
|       { | |
|         Index i = internal::random<Index>(0,rows-1); | |
|         Index j = internal::random<Index>(0,cols-1); | |
|         if ((m1.coeff(i,j)==Scalar(0)) && (internal::random<int>()%2)) | |
|           m2.insert(i,j) = m1(i,j) = internal::random<Scalar>(); | |
|         else | |
|         { | |
|           Scalar v = internal::random<Scalar>(); | |
|           m2.coeffRef(i,j) += v; | |
|           m1(i,j) += v; | |
|         } | |
|       } | |
|       VERIFY_IS_APPROX(m2,m1); | |
|     } | |
|      | |
|     // test insert (un-compressed) | |
|     for(int mode=0;mode<4;++mode) | |
|     { | |
|       DenseMatrix m1(rows,cols); | |
|       m1.setZero(); | |
|       SparseMatrixType m2(rows,cols); | |
|       VectorXi r(VectorXi::Constant(m2.outerSize(), ((mode%2)==0) ? int(m2.innerSize()) : std::max<int>(1,int(m2.innerSize())/8))); | |
|       m2.reserve(r); | |
|       for (Index k=0; k<rows*cols; ++k) | |
|       { | |
|         Index i = internal::random<Index>(0,rows-1); | |
|         Index j = internal::random<Index>(0,cols-1); | |
|         if (m1.coeff(i,j)==Scalar(0)) | |
|           m2.insert(i,j) = m1(i,j) = internal::random<Scalar>(); | |
|         if(mode==3) | |
|           m2.reserve(r); | |
|       } | |
|       if(internal::random<int>()%2) | |
|         m2.makeCompressed(); | |
|       VERIFY_IS_APPROX(m2,m1); | |
|     } | |
| 
 | |
|   // test basic computations | |
|   { | |
|     DenseMatrix refM1 = DenseMatrix::Zero(rows, cols); | |
|     DenseMatrix refM2 = DenseMatrix::Zero(rows, cols); | |
|     DenseMatrix refM3 = DenseMatrix::Zero(rows, cols); | |
|     DenseMatrix refM4 = DenseMatrix::Zero(rows, cols); | |
|     SparseMatrixType m1(rows, cols); | |
|     SparseMatrixType m2(rows, cols); | |
|     SparseMatrixType m3(rows, cols); | |
|     SparseMatrixType m4(rows, cols); | |
|     initSparse<Scalar>(density, refM1, m1); | |
|     initSparse<Scalar>(density, refM2, m2); | |
|     initSparse<Scalar>(density, refM3, m3); | |
|     initSparse<Scalar>(density, refM4, m4); | |
| 
 | |
|     VERIFY_IS_APPROX(m1*s1, refM1*s1); | |
|     VERIFY_IS_APPROX(m1+m2, refM1+refM2); | |
|     VERIFY_IS_APPROX(m1+m2+m3, refM1+refM2+refM3); | |
|     VERIFY_IS_APPROX(m3.cwiseProduct(m1+m2), refM3.cwiseProduct(refM1+refM2)); | |
|     VERIFY_IS_APPROX(m1*s1-m2, refM1*s1-refM2); | |
| 
 | |
|     VERIFY_IS_APPROX(m1*=s1, refM1*=s1); | |
|     VERIFY_IS_APPROX(m1/=s1, refM1/=s1); | |
| 
 | |
|     VERIFY_IS_APPROX(m1+=m2, refM1+=refM2); | |
|     VERIFY_IS_APPROX(m1-=m2, refM1-=refM2); | |
| 
 | |
|     if(SparseMatrixType::IsRowMajor) | |
|       VERIFY_IS_APPROX(m1.innerVector(0).dot(refM2.row(0)), refM1.row(0).dot(refM2.row(0))); | |
|     else | |
|       VERIFY_IS_APPROX(m1.innerVector(0).dot(refM2.col(0)), refM1.col(0).dot(refM2.col(0))); | |
|      | |
|     DenseVector rv = DenseVector::Random(m1.cols()); | |
|     DenseVector cv = DenseVector::Random(m1.rows()); | |
|     Index r = internal::random<Index>(0,m1.rows()-2); | |
|     Index c = internal::random<Index>(0,m1.cols()-1); | |
|     VERIFY_IS_APPROX(( m1.template block<1,Dynamic>(r,0,1,m1.cols()).dot(rv)) , refM1.row(r).dot(rv)); | |
|     VERIFY_IS_APPROX(m1.row(r).dot(rv), refM1.row(r).dot(rv)); | |
|     VERIFY_IS_APPROX(m1.col(c).dot(cv), refM1.col(c).dot(cv)); | |
| 
 | |
|     VERIFY_IS_APPROX(m1.conjugate(), refM1.conjugate()); | |
|     VERIFY_IS_APPROX(m1.real(), refM1.real()); | |
| 
 | |
|     refM4.setRandom(); | |
|     // sparse cwise* dense | |
|     VERIFY_IS_APPROX(m3.cwiseProduct(refM4), refM3.cwiseProduct(refM4)); | |
|     // dense cwise* sparse | |
|     VERIFY_IS_APPROX(refM4.cwiseProduct(m3), refM4.cwiseProduct(refM3)); | |
| //     VERIFY_IS_APPROX(m3.cwise()/refM4, refM3.cwise()/refM4); | |
|  | |
|     // test aliasing | |
|     VERIFY_IS_APPROX((m1 = -m1), (refM1 = -refM1)); | |
|     VERIFY_IS_APPROX((m1 = m1.transpose()), (refM1 = refM1.transpose().eval())); | |
|     VERIFY_IS_APPROX((m1 = -m1.transpose()), (refM1 = -refM1.transpose().eval())); | |
|     VERIFY_IS_APPROX((m1 += -m1), (refM1 += -refM1)); | |
|   } | |
| 
 | |
|   // test transpose | |
|   { | |
|     DenseMatrix refMat2 = DenseMatrix::Zero(rows, cols); | |
|     SparseMatrixType m2(rows, cols); | |
|     initSparse<Scalar>(density, refMat2, m2); | |
|     VERIFY_IS_APPROX(m2.transpose().eval(), refMat2.transpose().eval()); | |
|     VERIFY_IS_APPROX(m2.transpose(), refMat2.transpose()); | |
| 
 | |
|     VERIFY_IS_APPROX(SparseMatrixType(m2.adjoint()), refMat2.adjoint()); | |
|      | |
|     // check isApprox handles opposite storage order | |
|     typename Transpose<SparseMatrixType>::PlainObject m3(m2); | |
|     VERIFY(m2.isApprox(m3)); | |
|   } | |
| 
 | |
|   // test prune | |
|   { | |
|     SparseMatrixType m2(rows, cols); | |
|     DenseMatrix refM2(rows, cols); | |
|     refM2.setZero(); | |
|     int countFalseNonZero = 0; | |
|     int countTrueNonZero = 0; | |
|     m2.reserve(VectorXi::Constant(m2.outerSize(), int(m2.innerSize()))); | |
|     for (Index j=0; j<m2.cols(); ++j) | |
|     { | |
|       for (Index i=0; i<m2.rows(); ++i) | |
|       { | |
|         float x = internal::random<float>(0,1); | |
|         if (x<0.1) | |
|         { | |
|           // do nothing | |
|         } | |
|         else if (x<0.5) | |
|         { | |
|           countFalseNonZero++; | |
|           m2.insert(i,j) = Scalar(0); | |
|         } | |
|         else | |
|         { | |
|           countTrueNonZero++; | |
|           m2.insert(i,j) = Scalar(1); | |
|           refM2(i,j) = Scalar(1); | |
|         } | |
|       } | |
|     } | |
|     if(internal::random<bool>()) | |
|       m2.makeCompressed(); | |
|     VERIFY(countFalseNonZero+countTrueNonZero == m2.nonZeros()); | |
|     if(countTrueNonZero>0) | |
|       VERIFY_IS_APPROX(m2, refM2); | |
|     m2.prune(Scalar(1)); | |
|     VERIFY(countTrueNonZero==m2.nonZeros()); | |
|     VERIFY_IS_APPROX(m2, refM2); | |
|   } | |
| 
 | |
|   // test setFromTriplets | |
|   { | |
|     typedef Triplet<Scalar,StorageIndex> TripletType; | |
|     std::vector<TripletType> triplets; | |
|     Index ntriplets = rows*cols; | |
|     triplets.reserve(ntriplets); | |
|     DenseMatrix refMat_sum  = DenseMatrix::Zero(rows,cols); | |
|     DenseMatrix refMat_prod = DenseMatrix::Zero(rows,cols); | |
|     DenseMatrix refMat_last = DenseMatrix::Zero(rows,cols); | |
| 
 | |
|     for(Index i=0;i<ntriplets;++i) | |
|     { | |
|       StorageIndex r = internal::random<StorageIndex>(0,StorageIndex(rows-1)); | |
|       StorageIndex c = internal::random<StorageIndex>(0,StorageIndex(cols-1)); | |
|       Scalar v = internal::random<Scalar>(); | |
|       triplets.push_back(TripletType(r,c,v)); | |
|       refMat_sum(r,c) += v; | |
|       if(std::abs(refMat_prod(r,c))==0) | |
|         refMat_prod(r,c) = v; | |
|       else | |
|         refMat_prod(r,c) *= v; | |
|       refMat_last(r,c) = v; | |
|     } | |
|     SparseMatrixType m(rows,cols); | |
|     m.setFromTriplets(triplets.begin(), triplets.end()); | |
|     VERIFY_IS_APPROX(m, refMat_sum); | |
| 
 | |
|     m.setFromTriplets(triplets.begin(), triplets.end(), std::multiplies<Scalar>()); | |
|     VERIFY_IS_APPROX(m, refMat_prod); | |
| #if (defined(__cplusplus) && __cplusplus >= 201103L) | |
|     m.setFromTriplets(triplets.begin(), triplets.end(), [] (Scalar,Scalar b) { return b; }); | |
|     VERIFY_IS_APPROX(m, refMat_last); | |
| #endif | |
|   } | |
|    | |
|   // test Map | |
|   { | |
|     DenseMatrix refMat2(rows, cols), refMat3(rows, cols); | |
|     SparseMatrixType m2(rows, cols), m3(rows, cols); | |
|     initSparse<Scalar>(density, refMat2, m2); | |
|     initSparse<Scalar>(density, refMat3, m3); | |
|     { | |
|       Map<SparseMatrixType> mapMat2(m2.rows(), m2.cols(), m2.nonZeros(), m2.outerIndexPtr(), m2.innerIndexPtr(), m2.valuePtr(), m2.innerNonZeroPtr()); | |
|       Map<SparseMatrixType> mapMat3(m3.rows(), m3.cols(), m3.nonZeros(), m3.outerIndexPtr(), m3.innerIndexPtr(), m3.valuePtr(), m3.innerNonZeroPtr()); | |
|       VERIFY_IS_APPROX(mapMat2+mapMat3, refMat2+refMat3); | |
|       VERIFY_IS_APPROX(mapMat2+mapMat3, refMat2+refMat3); | |
|     } | |
|     { | |
|       MappedSparseMatrix<Scalar,SparseMatrixType::Options,StorageIndex> mapMat2(m2.rows(), m2.cols(), m2.nonZeros(), m2.outerIndexPtr(), m2.innerIndexPtr(), m2.valuePtr(), m2.innerNonZeroPtr()); | |
|       MappedSparseMatrix<Scalar,SparseMatrixType::Options,StorageIndex> mapMat3(m3.rows(), m3.cols(), m3.nonZeros(), m3.outerIndexPtr(), m3.innerIndexPtr(), m3.valuePtr(), m3.innerNonZeroPtr()); | |
|       VERIFY_IS_APPROX(mapMat2+mapMat3, refMat2+refMat3); | |
|       VERIFY_IS_APPROX(mapMat2+mapMat3, refMat2+refMat3); | |
|     } | |
|   } | |
| 
 | |
|   // test triangularView | |
|   { | |
|     DenseMatrix refMat2(rows, cols), refMat3(rows, cols); | |
|     SparseMatrixType m2(rows, cols), m3(rows, cols); | |
|     initSparse<Scalar>(density, refMat2, m2); | |
|     refMat3 = refMat2.template triangularView<Lower>(); | |
|     m3 = m2.template triangularView<Lower>(); | |
|     VERIFY_IS_APPROX(m3, refMat3); | |
| 
 | |
|     refMat3 = refMat2.template triangularView<Upper>(); | |
|     m3 = m2.template triangularView<Upper>(); | |
|     VERIFY_IS_APPROX(m3, refMat3); | |
| 
 | |
|     if(inner>=outer) // FIXME this should be implemented for outer>inner as well | |
|     { | |
|       refMat3 = refMat2.template triangularView<UnitUpper>(); | |
|       m3 = m2.template triangularView<UnitUpper>(); | |
|       VERIFY_IS_APPROX(m3, refMat3); | |
| 
 | |
|       refMat3 = refMat2.template triangularView<UnitLower>(); | |
|       m3 = m2.template triangularView<UnitLower>(); | |
|       VERIFY_IS_APPROX(m3, refMat3); | |
|     } | |
| 
 | |
|     refMat3 = refMat2.template triangularView<StrictlyUpper>(); | |
|     m3 = m2.template triangularView<StrictlyUpper>(); | |
|     VERIFY_IS_APPROX(m3, refMat3); | |
| 
 | |
|     refMat3 = refMat2.template triangularView<StrictlyLower>(); | |
|     m3 = m2.template triangularView<StrictlyLower>(); | |
|     VERIFY_IS_APPROX(m3, refMat3); | |
| 
 | |
|     // check sparse-traingular to dense | |
|     refMat3 = m2.template triangularView<StrictlyUpper>(); | |
|     VERIFY_IS_APPROX(refMat3, DenseMatrix(refMat2.template triangularView<StrictlyUpper>())); | |
|   } | |
|    | |
|   // test selfadjointView | |
|   if(!SparseMatrixType::IsRowMajor) | |
|   { | |
|     DenseMatrix refMat2(rows, rows), refMat3(rows, rows); | |
|     SparseMatrixType m2(rows, rows), m3(rows, rows); | |
|     initSparse<Scalar>(density, refMat2, m2); | |
|     refMat3 = refMat2.template selfadjointView<Lower>(); | |
|     m3 = m2.template selfadjointView<Lower>(); | |
|     VERIFY_IS_APPROX(m3, refMat3); | |
| 
 | |
|     // selfadjointView only works for square matrices: | |
|     SparseMatrixType m4(rows, rows+1); | |
|     VERIFY_RAISES_ASSERT(m4.template selfadjointView<Lower>()); | |
|     VERIFY_RAISES_ASSERT(m4.template selfadjointView<Upper>()); | |
|   } | |
|    | |
|   // test sparseView | |
|   { | |
|     DenseMatrix refMat2 = DenseMatrix::Zero(rows, rows); | |
|     SparseMatrixType m2(rows, rows); | |
|     initSparse<Scalar>(density, refMat2, m2); | |
|     VERIFY_IS_APPROX(m2.eval(), refMat2.sparseView().eval()); | |
|   } | |
| 
 | |
|   // test diagonal | |
|   { | |
|     DenseMatrix refMat2 = DenseMatrix::Zero(rows, cols); | |
|     SparseMatrixType m2(rows, cols); | |
|     initSparse<Scalar>(density, refMat2, m2); | |
|     VERIFY_IS_APPROX(m2.diagonal(), refMat2.diagonal().eval()); | |
|     VERIFY_IS_APPROX(const_cast<const SparseMatrixType&>(m2).diagonal(), refMat2.diagonal().eval()); | |
|      | |
|     initSparse<Scalar>(density, refMat2, m2, ForceNonZeroDiag); | |
|     m2.diagonal()      += refMat2.diagonal(); | |
|     refMat2.diagonal() += refMat2.diagonal(); | |
|     VERIFY_IS_APPROX(m2, refMat2); | |
|   } | |
|    | |
|   // test diagonal to sparse | |
|   { | |
|     DenseVector d = DenseVector::Random(rows); | |
|     DenseMatrix refMat2 = d.asDiagonal(); | |
|     SparseMatrixType m2(rows, rows); | |
|     m2 = d.asDiagonal(); | |
|     VERIFY_IS_APPROX(m2, refMat2); | |
|     SparseMatrixType m3(d.asDiagonal()); | |
|     VERIFY_IS_APPROX(m3, refMat2); | |
|     refMat2 += d.asDiagonal(); | |
|     m2 += d.asDiagonal(); | |
|     VERIFY_IS_APPROX(m2, refMat2); | |
|   } | |
|    | |
|   // test conservative resize | |
|   { | |
|       std::vector< std::pair<StorageIndex,StorageIndex> > inc; | |
|       if(rows > 3 && cols > 2) | |
|         inc.push_back(std::pair<StorageIndex,StorageIndex>(-3,-2)); | |
|       inc.push_back(std::pair<StorageIndex,StorageIndex>(0,0)); | |
|       inc.push_back(std::pair<StorageIndex,StorageIndex>(3,2)); | |
|       inc.push_back(std::pair<StorageIndex,StorageIndex>(3,0)); | |
|       inc.push_back(std::pair<StorageIndex,StorageIndex>(0,3)); | |
|        | |
|       for(size_t i = 0; i< inc.size(); i++) { | |
|         StorageIndex incRows = inc[i].first; | |
|         StorageIndex incCols = inc[i].second; | |
|         SparseMatrixType m1(rows, cols); | |
|         DenseMatrix refMat1 = DenseMatrix::Zero(rows, cols); | |
|         initSparse<Scalar>(density, refMat1, m1); | |
|          | |
|         m1.conservativeResize(rows+incRows, cols+incCols); | |
|         refMat1.conservativeResize(rows+incRows, cols+incCols); | |
|         if (incRows > 0) refMat1.bottomRows(incRows).setZero(); | |
|         if (incCols > 0) refMat1.rightCols(incCols).setZero(); | |
|          | |
|         VERIFY_IS_APPROX(m1, refMat1); | |
|          | |
|         // Insert new values | |
|         if (incRows > 0)  | |
|           m1.insert(m1.rows()-1, 0) = refMat1(refMat1.rows()-1, 0) = 1; | |
|         if (incCols > 0)  | |
|           m1.insert(0, m1.cols()-1) = refMat1(0, refMat1.cols()-1) = 1; | |
|            | |
|         VERIFY_IS_APPROX(m1, refMat1); | |
|            | |
|            | |
|       } | |
|   } | |
| 
 | |
|   // test Identity matrix | |
|   { | |
|     DenseMatrix refMat1 = DenseMatrix::Identity(rows, rows); | |
|     SparseMatrixType m1(rows, rows); | |
|     m1.setIdentity(); | |
|     VERIFY_IS_APPROX(m1, refMat1); | |
|     for(int k=0; k<rows*rows/4; ++k) | |
|     { | |
|       Index i = internal::random<Index>(0,rows-1); | |
|       Index j = internal::random<Index>(0,rows-1); | |
|       Scalar v = internal::random<Scalar>(); | |
|       m1.coeffRef(i,j) = v; | |
|       refMat1.coeffRef(i,j) = v; | |
|       VERIFY_IS_APPROX(m1, refMat1); | |
|       if(internal::random<Index>(0,10)<2) | |
|         m1.makeCompressed(); | |
|     } | |
|     m1.setIdentity(); | |
|     refMat1.setIdentity(); | |
|     VERIFY_IS_APPROX(m1, refMat1); | |
|   } | |
| } | |
| 
 | |
| 
 | |
| template<typename SparseMatrixType> | |
| void big_sparse_triplet(Index rows, Index cols, double density) { | |
|   typedef typename SparseMatrixType::StorageIndex StorageIndex; | |
|   typedef typename SparseMatrixType::Scalar Scalar; | |
|   typedef Triplet<Scalar,Index> TripletType; | |
|   std::vector<TripletType> triplets; | |
|   double nelements = density * rows*cols; | |
|   VERIFY(nelements>=0 && nelements <  NumTraits<StorageIndex>::highest()); | |
|   Index ntriplets = Index(nelements); | |
|   triplets.reserve(ntriplets); | |
|   Scalar sum = Scalar(0); | |
|   for(Index i=0;i<ntriplets;++i) | |
|   { | |
|     Index r = internal::random<Index>(0,rows-1); | |
|     Index c = internal::random<Index>(0,cols-1); | |
|     Scalar v = internal::random<Scalar>(); | |
|     triplets.push_back(TripletType(r,c,v)); | |
|     sum += v; | |
|   } | |
|   SparseMatrixType m(rows,cols); | |
|   m.setFromTriplets(triplets.begin(), triplets.end()); | |
|   VERIFY(m.nonZeros() <= ntriplets); | |
|   VERIFY_IS_APPROX(sum, m.sum()); | |
| } | |
| 
 | |
| 
 | |
| void test_sparse_basic() | |
| { | |
|   for(int i = 0; i < g_repeat; i++) { | |
|     int r = StormEigen::internal::random<int>(1,200), c = StormEigen::internal::random<int>(1,200); | |
|     if(StormEigen::internal::random<int>(0,4) == 0) { | |
|       r = c; // check square matrices in 25% of tries | |
|     } | |
|     EIGEN_UNUSED_VARIABLE(r+c); | |
|     CALL_SUBTEST_1(( sparse_basic(SparseMatrix<double>(1, 1)) )); | |
|     CALL_SUBTEST_1(( sparse_basic(SparseMatrix<double>(8, 8)) )); | |
|     CALL_SUBTEST_2(( sparse_basic(SparseMatrix<std::complex<double>, ColMajor>(r, c)) )); | |
|     CALL_SUBTEST_2(( sparse_basic(SparseMatrix<std::complex<double>, RowMajor>(r, c)) )); | |
|     CALL_SUBTEST_1(( sparse_basic(SparseMatrix<double>(r, c)) )); | |
|     CALL_SUBTEST_5(( sparse_basic(SparseMatrix<double,ColMajor,long int>(r, c)) )); | |
|     CALL_SUBTEST_5(( sparse_basic(SparseMatrix<double,RowMajor,long int>(r, c)) )); | |
|      | |
|     r = StormEigen::internal::random<int>(1,100); | |
|     c = StormEigen::internal::random<int>(1,100); | |
|     if(StormEigen::internal::random<int>(0,4) == 0) { | |
|       r = c; // check square matrices in 25% of tries | |
|     } | |
|      | |
|     CALL_SUBTEST_6(( sparse_basic(SparseMatrix<double,ColMajor,short int>(short(r), short(c))) )); | |
|     CALL_SUBTEST_6(( sparse_basic(SparseMatrix<double,RowMajor,short int>(short(r), short(c))) )); | |
|   } | |
| 
 | |
|   // Regression test for bug 900: (manually insert higher values here, if you have enough RAM): | |
|   CALL_SUBTEST_3((big_sparse_triplet<SparseMatrix<float, RowMajor, int> >(10000, 10000, 0.125))); | |
|   CALL_SUBTEST_4((big_sparse_triplet<SparseMatrix<double, ColMajor, long int> >(10000, 10000, 0.125))); | |
| 
 | |
|   // Regression test for bug 1105 | |
| #ifdef EIGEN_TEST_PART_6 | |
|   { | |
|     int n = StormEigen::internal::random<int>(200,600); | |
|     SparseMatrix<std::complex<double>,0, long> mat(n, n); | |
|     std::complex<double> val; | |
| 
 | |
|     for(int i=0; i<n; ++i) | |
|     { | |
|       mat.coeffRef(i, i%(n/10)) = val; | |
|       VERIFY(mat.data().allocatedSize()<20*n); | |
|     } | |
|   } | |
| #endif | |
| }
 |