You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							254 lines
						
					
					
						
							10 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							254 lines
						
					
					
						
							10 KiB
						
					
					
				| // This file is part of Eigen, a lightweight C++ template library | |
| // for linear algebra. | |
| // | |
| // Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr> | |
| // | |
| // This Source Code Form is subject to the terms of the Mozilla | |
| // Public License v. 2.0. If a copy of the MPL was not distributed | |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | |
|  | |
| #include "main.h" | |
|  | |
| template<typename MatrixType> void array_for_matrix(const MatrixType& m) | |
| { | |
|   typedef typename MatrixType::Index Index; | |
|   typedef typename MatrixType::Scalar Scalar; | |
|   typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> ColVectorType; | |
|   typedef Matrix<Scalar, 1, MatrixType::ColsAtCompileTime> RowVectorType;  | |
| 
 | |
|   Index rows = m.rows(); | |
|   Index cols = m.cols(); | |
| 
 | |
|   MatrixType m1 = MatrixType::Random(rows, cols), | |
|              m2 = MatrixType::Random(rows, cols), | |
|              m3(rows, cols); | |
| 
 | |
|   ColVectorType cv1 = ColVectorType::Random(rows); | |
|   RowVectorType rv1 = RowVectorType::Random(cols); | |
|    | |
|   Scalar  s1 = internal::random<Scalar>(), | |
|           s2 = internal::random<Scalar>(); | |
|            | |
|   // scalar addition | |
|   VERIFY_IS_APPROX(m1.array() + s1, s1 + m1.array()); | |
|   VERIFY_IS_APPROX((m1.array() + s1).matrix(), MatrixType::Constant(rows,cols,s1) + m1); | |
|   VERIFY_IS_APPROX(((m1*Scalar(2)).array() - s2).matrix(), (m1+m1) - MatrixType::Constant(rows,cols,s2) ); | |
|   m3 = m1; | |
|   m3.array() += s2; | |
|   VERIFY_IS_APPROX(m3, (m1.array() + s2).matrix()); | |
|   m3 = m1; | |
|   m3.array() -= s1; | |
|   VERIFY_IS_APPROX(m3, (m1.array() - s1).matrix()); | |
| 
 | |
|   // reductions | |
|   VERIFY_IS_MUCH_SMALLER_THAN(m1.colwise().sum().sum() - m1.sum(), m1.squaredNorm()); | |
|   VERIFY_IS_MUCH_SMALLER_THAN(m1.rowwise().sum().sum() - m1.sum(), m1.squaredNorm()); | |
|   VERIFY_IS_MUCH_SMALLER_THAN(m1.colwise().sum() + m2.colwise().sum() - (m1+m2).colwise().sum(), (m1+m2).squaredNorm()); | |
|   VERIFY_IS_MUCH_SMALLER_THAN(m1.rowwise().sum() - m2.rowwise().sum() - (m1-m2).rowwise().sum(), (m1-m2).squaredNorm()); | |
|   VERIFY_IS_APPROX(m1.colwise().sum(), m1.colwise().redux(internal::scalar_sum_op<Scalar>())); | |
| 
 | |
|   // vector-wise ops | |
|   m3 = m1; | |
|   VERIFY_IS_APPROX(m3.colwise() += cv1, m1.colwise() + cv1); | |
|   m3 = m1; | |
|   VERIFY_IS_APPROX(m3.colwise() -= cv1, m1.colwise() - cv1); | |
|   m3 = m1; | |
|   VERIFY_IS_APPROX(m3.rowwise() += rv1, m1.rowwise() + rv1); | |
|   m3 = m1; | |
|   VERIFY_IS_APPROX(m3.rowwise() -= rv1, m1.rowwise() - rv1); | |
|    | |
|   // empty objects | |
|   VERIFY_IS_APPROX(m1.block(0,0,0,cols).colwise().sum(),  RowVectorType::Zero(cols)); | |
|   VERIFY_IS_APPROX(m1.block(0,0,rows,0).rowwise().prod(), ColVectorType::Ones(rows)); | |
|    | |
|   // verify the const accessors exist | |
|   const Scalar& ref_m1 = m.matrix().array().coeffRef(0); | |
|   const Scalar& ref_m2 = m.matrix().array().coeffRef(0,0); | |
|   const Scalar& ref_a1 = m.array().matrix().coeffRef(0); | |
|   const Scalar& ref_a2 = m.array().matrix().coeffRef(0,0); | |
|   VERIFY(&ref_a1 == &ref_m1); | |
|   VERIFY(&ref_a2 == &ref_m2); | |
| } | |
| 
 | |
| template<typename MatrixType> void comparisons(const MatrixType& m) | |
| { | |
|   using std::abs; | |
|   typedef typename MatrixType::Index Index; | |
|   typedef typename MatrixType::Scalar Scalar; | |
|   typedef typename NumTraits<Scalar>::Real RealScalar; | |
| 
 | |
|   Index rows = m.rows(); | |
|   Index cols = m.cols(); | |
| 
 | |
|   Index r = internal::random<Index>(0, rows-1), | |
|         c = internal::random<Index>(0, cols-1); | |
| 
 | |
|   MatrixType m1 = MatrixType::Random(rows, cols), | |
|              m2 = MatrixType::Random(rows, cols), | |
|              m3(rows, cols); | |
| 
 | |
|   VERIFY(((m1.array() + Scalar(1)) > m1.array()).all()); | |
|   VERIFY(((m1.array() - Scalar(1)) < m1.array()).all()); | |
|   if (rows*cols>1) | |
|   { | |
|     m3 = m1; | |
|     m3(r,c) += 1; | |
|     VERIFY(! (m1.array() < m3.array()).all() ); | |
|     VERIFY(! (m1.array() > m3.array()).all() ); | |
|   } | |
| 
 | |
|   // comparisons to scalar | |
|   VERIFY( (m1.array() != (m1(r,c)+1) ).any() ); | |
|   VERIFY( (m1.array() > (m1(r,c)-1) ).any() ); | |
|   VERIFY( (m1.array() < (m1(r,c)+1) ).any() ); | |
|   VERIFY( (m1.array() == m1(r,c) ).any() ); | |
|   VERIFY( m1.cwiseEqual(m1(r,c)).any() ); | |
| 
 | |
|   // test Select | |
|   VERIFY_IS_APPROX( (m1.array()<m2.array()).select(m1,m2), m1.cwiseMin(m2) ); | |
|   VERIFY_IS_APPROX( (m1.array()>m2.array()).select(m1,m2), m1.cwiseMax(m2) ); | |
|   Scalar mid = (m1.cwiseAbs().minCoeff() + m1.cwiseAbs().maxCoeff())/Scalar(2); | |
|   for (int j=0; j<cols; ++j) | |
|   for (int i=0; i<rows; ++i) | |
|     m3(i,j) = abs(m1(i,j))<mid ? 0 : m1(i,j); | |
|   VERIFY_IS_APPROX( (m1.array().abs()<MatrixType::Constant(rows,cols,mid).array()) | |
|                         .select(MatrixType::Zero(rows,cols),m1), m3); | |
|   // shorter versions: | |
|   VERIFY_IS_APPROX( (m1.array().abs()<MatrixType::Constant(rows,cols,mid).array()) | |
|                         .select(0,m1), m3); | |
|   VERIFY_IS_APPROX( (m1.array().abs()>=MatrixType::Constant(rows,cols,mid).array()) | |
|                         .select(m1,0), m3); | |
|   // even shorter version: | |
|   VERIFY_IS_APPROX( (m1.array().abs()<mid).select(0,m1), m3); | |
| 
 | |
|   // count | |
|   VERIFY(((m1.array().abs()+1)>RealScalar(0.1)).count() == rows*cols); | |
| 
 | |
|   typedef Matrix<typename MatrixType::Index, Dynamic, 1> VectorOfIndices; | |
| 
 | |
|   // TODO allows colwise/rowwise for array | |
|   VERIFY_IS_APPROX(((m1.array().abs()+1)>RealScalar(0.1)).matrix().colwise().count(), VectorOfIndices::Constant(cols,rows).transpose()); | |
|   VERIFY_IS_APPROX(((m1.array().abs()+1)>RealScalar(0.1)).matrix().rowwise().count(), VectorOfIndices::Constant(rows, cols)); | |
| } | |
| 
 | |
| template<typename VectorType> void lpNorm(const VectorType& v) | |
| { | |
|   using std::sqrt; | |
|   VectorType u = VectorType::Random(v.size()); | |
| 
 | |
|   VERIFY_IS_APPROX(u.template lpNorm<Infinity>(), u.cwiseAbs().maxCoeff()); | |
|   VERIFY_IS_APPROX(u.template lpNorm<1>(), u.cwiseAbs().sum()); | |
|   VERIFY_IS_APPROX(u.template lpNorm<2>(), sqrt(u.array().abs().square().sum())); | |
|   VERIFY_IS_APPROX(numext::pow(u.template lpNorm<5>(), typename VectorType::RealScalar(5)), u.array().abs().pow(5).sum()); | |
| } | |
| 
 | |
| template<typename MatrixType> void cwise_min_max(const MatrixType& m) | |
| { | |
|   typedef typename MatrixType::Index Index; | |
|   typedef typename MatrixType::Scalar Scalar; | |
| 
 | |
|   Index rows = m.rows(); | |
|   Index cols = m.cols(); | |
| 
 | |
|   MatrixType m1 = MatrixType::Random(rows, cols); | |
| 
 | |
|   // min/max with array | |
|   Scalar maxM1 = m1.maxCoeff(); | |
|   Scalar minM1 = m1.minCoeff(); | |
| 
 | |
|   VERIFY_IS_APPROX(MatrixType::Constant(rows,cols, minM1), m1.cwiseMin(MatrixType::Constant(rows,cols, minM1))); | |
|   VERIFY_IS_APPROX(m1, m1.cwiseMin(MatrixType::Constant(rows,cols, maxM1))); | |
| 
 | |
|   VERIFY_IS_APPROX(MatrixType::Constant(rows,cols, maxM1), m1.cwiseMax(MatrixType::Constant(rows,cols, maxM1))); | |
|   VERIFY_IS_APPROX(m1, m1.cwiseMax(MatrixType::Constant(rows,cols, minM1))); | |
| 
 | |
|   // min/max with scalar input | |
|   VERIFY_IS_APPROX(MatrixType::Constant(rows,cols, minM1), m1.cwiseMin( minM1)); | |
|   VERIFY_IS_APPROX(m1, m1.cwiseMin(maxM1)); | |
|   VERIFY_IS_APPROX(-m1, (-m1).cwiseMin(-minM1)); | |
|   VERIFY_IS_APPROX(-m1.array(), ((-m1).array().min)( -minM1)); | |
| 
 | |
|   VERIFY_IS_APPROX(MatrixType::Constant(rows,cols, maxM1), m1.cwiseMax( maxM1)); | |
|   VERIFY_IS_APPROX(m1, m1.cwiseMax(minM1)); | |
|   VERIFY_IS_APPROX(-m1, (-m1).cwiseMax(-maxM1)); | |
|   VERIFY_IS_APPROX(-m1.array(), ((-m1).array().max)(-maxM1)); | |
| 
 | |
|   VERIFY_IS_APPROX(MatrixType::Constant(rows,cols, minM1).array(), (m1.array().min)( minM1)); | |
|   VERIFY_IS_APPROX(m1.array(), (m1.array().min)( maxM1)); | |
| 
 | |
|   VERIFY_IS_APPROX(MatrixType::Constant(rows,cols, maxM1).array(), (m1.array().max)( maxM1)); | |
|   VERIFY_IS_APPROX(m1.array(), (m1.array().max)( minM1)); | |
| 
 | |
| } | |
| 
 | |
| template<typename MatrixTraits> void resize(const MatrixTraits& t) | |
| { | |
|   typedef typename MatrixTraits::Index Index; | |
|   typedef typename MatrixTraits::Scalar Scalar; | |
|   typedef Matrix<Scalar,Dynamic,Dynamic> MatrixType; | |
|   typedef Array<Scalar,Dynamic,Dynamic> Array2DType; | |
|   typedef Matrix<Scalar,Dynamic,1> VectorType; | |
|   typedef Array<Scalar,Dynamic,1> Array1DType; | |
| 
 | |
|   Index rows = t.rows(), cols = t.cols(); | |
| 
 | |
|   MatrixType m(rows,cols); | |
|   VectorType v(rows); | |
|   Array2DType a2(rows,cols); | |
|   Array1DType a1(rows); | |
| 
 | |
|   m.array().resize(rows+1,cols+1); | |
|   VERIFY(m.rows()==rows+1 && m.cols()==cols+1); | |
|   a2.matrix().resize(rows+1,cols+1); | |
|   VERIFY(a2.rows()==rows+1 && a2.cols()==cols+1); | |
|   v.array().resize(cols); | |
|   VERIFY(v.size()==cols); | |
|   a1.matrix().resize(cols); | |
|   VERIFY(a1.size()==cols); | |
| } | |
| 
 | |
| void regression_bug_654() | |
| { | |
|   ArrayXf a = RowVectorXf(3); | |
|   VectorXf v = Array<float,1,Dynamic>(3); | |
| } | |
| 
 | |
| void test_array_for_matrix() | |
| { | |
|   for(int i = 0; i < g_repeat; i++) { | |
|     CALL_SUBTEST_1( array_for_matrix(Matrix<float, 1, 1>()) ); | |
|     CALL_SUBTEST_2( array_for_matrix(Matrix2f()) ); | |
|     CALL_SUBTEST_3( array_for_matrix(Matrix4d()) ); | |
|     CALL_SUBTEST_4( array_for_matrix(MatrixXcf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); | |
|     CALL_SUBTEST_5( array_for_matrix(MatrixXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); | |
|     CALL_SUBTEST_6( array_for_matrix(MatrixXi(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); | |
|   } | |
|   for(int i = 0; i < g_repeat; i++) { | |
|     CALL_SUBTEST_1( comparisons(Matrix<float, 1, 1>()) ); | |
|     CALL_SUBTEST_2( comparisons(Matrix2f()) ); | |
|     CALL_SUBTEST_3( comparisons(Matrix4d()) ); | |
|     CALL_SUBTEST_5( comparisons(MatrixXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); | |
|     CALL_SUBTEST_6( comparisons(MatrixXi(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); | |
|   } | |
|   for(int i = 0; i < g_repeat; i++) { | |
|     CALL_SUBTEST_1( cwise_min_max(Matrix<float, 1, 1>()) ); | |
|     CALL_SUBTEST_2( cwise_min_max(Matrix2f()) ); | |
|     CALL_SUBTEST_3( cwise_min_max(Matrix4d()) ); | |
|     CALL_SUBTEST_5( cwise_min_max(MatrixXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); | |
|     CALL_SUBTEST_6( cwise_min_max(MatrixXi(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); | |
|   } | |
|   for(int i = 0; i < g_repeat; i++) { | |
|     CALL_SUBTEST_1( lpNorm(Matrix<float, 1, 1>()) ); | |
|     CALL_SUBTEST_2( lpNorm(Vector2f()) ); | |
|     CALL_SUBTEST_7( lpNorm(Vector3d()) ); | |
|     CALL_SUBTEST_8( lpNorm(Vector4f()) ); | |
|     CALL_SUBTEST_5( lpNorm(VectorXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); | |
|     CALL_SUBTEST_4( lpNorm(VectorXcf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); | |
|   } | |
|   for(int i = 0; i < g_repeat; i++) { | |
|     CALL_SUBTEST_4( resize(MatrixXcf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); | |
|     CALL_SUBTEST_5( resize(MatrixXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); | |
|     CALL_SUBTEST_6( resize(MatrixXi(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); | |
|   } | |
|   CALL_SUBTEST_6( regression_bug_654() ); | |
| }
 |