You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

368 lines
11 KiB

/* glpnet05.c (Goldfarb's maximum flow problem generator) */
/***********************************************************************
* This code is part of GLPK (GNU Linear Programming Kit).
*
* This code is a modified version of the program RMFGEN, a maxflow
* problem generator developed by D.Goldfarb and M.Grigoriadis, and
* originally implemented by Tamas Badics <badics@rutcor.rutgers.edu>.
* The original code is publically available on the DIMACS ftp site at:
* <ftp://dimacs.rutgers.edu/pub/netflow/generators/network/genrmf>.
*
* All changes concern only the program interface, so this modified
* version produces exactly the same instances as the original version.
*
* Changes were made by Andrew Makhorin <mao@gnu.org>.
*
* GLPK is free software: you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GLPK is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
* License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GLPK. If not, see <http://www.gnu.org/licenses/>.
***********************************************************************/
#include "env.h"
#include "glpk.h"
#include "rng.h"
/***********************************************************************
* NAME
*
* glp_rmfgen - Goldfarb's maximum flow problem generator
*
* SYNOPSIS
*
* int glp_rmfgen(glp_graph *G, int *s, int *t, int a_cap,
* const int parm[1+5]);
*
* DESCRIPTION
*
* The routine glp_rmfgen is a maximum flow problem generator developed
* by D.Goldfarb and M.Grigoriadis.
*
* The parameter G specifies the graph object, to which the generated
* problem data have to be stored. Note that on entry the graph object
* is erased with the routine glp_erase_graph.
*
* The pointer s specifies a location, to which the routine stores the
* source node number. If s is NULL, the node number is not stored.
*
* The pointer t specifies a location, to which the routine stores the
* sink node number. If t is NULL, the node number is not stored.
*
* The parameter a_cap specifies an offset of the field of type double
* in the arc data block, to which the routine stores the arc capacity.
* If a_cap < 0, the capacity is not stored.
*
* The array parm contains description of the network to be generated:
*
* parm[0] not used
* parm[1] (seed) random number seed (a positive integer)
* parm[2] (a) frame size
* parm[3] (b) depth
* parm[4] (c1) minimal arc capacity
* parm[5] (c2) maximal arc capacity
*
* RETURNS
*
* If the instance was successfully generated, the routine glp_netgen
* returns zero; otherwise, if specified parameters are inconsistent,
* the routine returns a non-zero error code.
*
* COMMENTS
*
* The generated network is as follows. It has b pieces of frames of
* size a * a. (So alltogether the number of vertices is a * a * b)
*
* In each frame all the vertices are connected with their neighbours
* (forth and back). In addition the vertices of a frame are connected
* one to one with the vertices of next frame using a random permutation
* of those vertices.
*
* The source is the lower left vertex of the first frame, the sink is
* the upper right vertex of the b'th frame.
*
* t
* +-------+
* | .|
* | . |
* / | / |
* +-------+/ -+ b
* | | |/.
* a | -v- |/
* | | |/
* +-------+ 1
* s a
*
* The capacities are randomly chosen integers from the range of [c1,c2]
* in the case of interconnecting edges, and c2 * a * a for the in-frame
* edges.
*
* REFERENCES
*
* D.Goldfarb and M.D.Grigoriadis, "A computational comparison of the
* Dinic and network simplex methods for maximum flow." Annals of Op.
* Res. 13 (1988), pp. 83-123.
*
* U.Derigs and W.Meier, "Implementing Goldberg's max-flow algorithm:
* A computational investigation." Zeitschrift fuer Operations Research
* 33 (1989), pp. 383-403. */
typedef struct VERTEX
{ struct EDGE **edgelist;
/* Pointer to the list of pointers to the adjacent edges.
(No matter that to or from edges) */
struct EDGE **current;
/* Pointer to the current edge */
int degree;
/* Number of adjacent edges (both direction) */
int index;
} vertex;
typedef struct EDGE
{ int from;
int to;
int cap;
/* Capacity */
} edge;
typedef struct NETWORK
{ struct NETWORK *next, *prev;
int vertnum;
int edgenum;
vertex *verts;
/* Vertex array[1..vertnum] */
edge *edges;
/* Edge array[1..edgenum] */
int source;
/* Pointer to the source */
int sink;
/* Pointer to the sink */
} network;
struct csa
{ /* common storage area */
glp_graph *G;
int *s, *t, a_cap;
RNG *rand;
network *N;
int *Parr;
int A, AA, C2AA, Ec;
};
#define G (csa->G)
#define s (csa->s)
#define t (csa->t)
#define a_cap (csa->a_cap)
#define N (csa->N)
#define Parr (csa->Parr)
#define A (csa->A)
#define AA (csa->AA)
#define C2AA (csa->C2AA)
#define Ec (csa->Ec)
#undef random
#define random(A) (int)(rng_unif_01(csa->rand) * (double)(A))
#define RANDOM(A, B) (int)(random((B) - (A) + 1) + (A))
#define sgn(A) (((A) > 0) ? 1 : ((A) == 0) ? 0 : -1)
static void make_edge(struct csa *csa, int from, int to, int c1, int c2)
{ Ec++;
N->edges[Ec].from = from;
N->edges[Ec].to = to;
N->edges[Ec].cap = RANDOM(c1, c2);
return;
}
static void permute(struct csa *csa)
{ int i, j, tmp;
for (i = 1; i < AA; i++)
{ j = RANDOM(i, AA);
tmp = Parr[i];
Parr[i] = Parr[j];
Parr[j] = tmp;
}
return;
}
static void connect(struct csa *csa, int offset, int cv, int x1, int y1)
{ int cv1;
cv1 = offset + (x1 - 1) * A + y1;
Ec++;
N->edges[Ec].from = cv;
N->edges[Ec].to = cv1;
N->edges[Ec].cap = C2AA;
return;
}
static network *gen_rmf(struct csa *csa, int a, int b, int c1, int c2)
{ /* generates a network with a*a*b nodes and 6a*a*b-4ab-2a*a edges
random_frame network:
Derigs & Meier, Methods & Models of OR (1989), 33:383-403 */
int x, y, z, offset, cv;
A = a;
AA = a * a;
C2AA = c2 * AA;
Ec = 0;
N = (network *)xmalloc(sizeof(network));
N->vertnum = AA * b;
N->edgenum = 5 * AA * b - 4 * A * b - AA;
N->edges = (edge *)xcalloc(N->edgenum + 1, sizeof(edge));
N->source = 1;
N->sink = N->vertnum;
Parr = (int *)xcalloc(AA + 1, sizeof(int));
for (x = 1; x <= AA; x++)
Parr[x] = x;
for (z = 1; z <= b; z++)
{ offset = AA * (z - 1);
if (z != b)
permute(csa);
for (x = 1; x <= A; x++)
{ for (y = 1; y <= A; y++)
{ cv = offset + (x - 1) * A + y;
if (z != b)
make_edge(csa, cv, offset + AA + Parr[cv - offset],
c1, c2); /* the intermediate edges */
if (y < A)
connect(csa, offset, cv, x, y + 1);
if (y > 1)
connect(csa, offset, cv, x, y - 1);
if (x < A)
connect(csa, offset, cv, x + 1, y);
if (x > 1)
connect(csa, offset, cv, x - 1, y);
}
}
}
xfree(Parr);
return N;
}
static void print_max_format(struct csa *csa, network *n, char *comm[],
int dim)
{ /* prints a network heading with dim lines of comments (no \n
needs at the ends) */
int i, vnum, e_num;
edge *e;
vnum = n->vertnum;
e_num = n->edgenum;
if (G == NULL)
{ for (i = 0; i < dim; i++)
xprintf("c %s\n", comm[i]);
xprintf("p max %7d %10d\n", vnum, e_num);
xprintf("n %7d s\n", n->source);
xprintf("n %7d t\n", n->sink);
}
else
{ glp_add_vertices(G, vnum);
if (s != NULL) *s = n->source;
if (t != NULL) *t = n->sink;
}
for (i = 1; i <= e_num; i++)
{ e = &n->edges[i];
if (G == NULL)
xprintf("a %7d %7d %10d\n", e->from, e->to, (int)e->cap);
else
{ glp_arc *a = glp_add_arc(G, e->from, e->to);
if (a_cap >= 0)
{ double temp = (double)e->cap;
memcpy((char *)a->data + a_cap, &temp, sizeof(double));
}
}
}
return;
}
static void gen_free_net(network *n)
{ xfree(n->edges);
xfree(n);
return;
}
int glp_rmfgen(glp_graph *G_, int *_s, int *_t, int _a_cap,
const int parm[1+5])
{ struct csa _csa, *csa = &_csa;
network *n;
char comm[10][80], *com1[10];
int seed, a, b, c1, c2, ret;
G = G_;
s = _s;
t = _t;
a_cap = _a_cap;
if (G != NULL)
{ if (a_cap >= 0 && a_cap > G->a_size - (int)sizeof(double))
xerror("glp_rmfgen: a_cap = %d; invalid offset\n", a_cap);
}
seed = parm[1];
a = parm[2];
b = parm[3];
c1 = parm[4];
c2 = parm[5];
if (!(seed > 0 && 1 <= a && a <= 1000 && 1 <= b && b <= 1000 &&
0 <= c1 && c1 <= c2 && c2 <= 1000))
{ ret = 1;
goto done;
}
if (G != NULL)
{ glp_erase_graph(G, G->v_size, G->a_size);
glp_set_graph_name(G, "RMFGEN");
}
csa->rand = rng_create_rand();
rng_init_rand(csa->rand, seed);
n = gen_rmf(csa, a, b, c1, c2);
sprintf(comm[0], "This file was generated by genrmf.");
sprintf(comm[1], "The parameters are: a: %d b: %d c1: %d c2: %d",
a, b, c1, c2);
com1[0] = comm[0];
com1[1] = comm[1];
print_max_format(csa, n, com1, 2);
gen_free_net(n);
rng_delete_rand(csa->rand);
ret = 0;
done: return ret;
}
/**********************************************************************/
#if 0
int main(int argc, char *argv[])
{ int seed, a, b, c1, c2, i, parm[1+5];
seed = 123;
a = b = c1 = c2 = -1;
for (i = 1; i < argc; i++)
{ if (strcmp(argv[i], "-seed") == 0)
seed = atoi(argv[++i]);
else if (strcmp(argv[i], "-a") == 0)
a = atoi(argv[++i]);
else if (strcmp(argv[i], "-b") == 0)
b = atoi(argv[++i]);
else if (strcmp(argv[i], "-c1") == 0)
c1 = atoi(argv[++i]);
else if (strcmp(argv[i], "-c2") == 0)
c2 = atoi(argv[++i]);
}
if (a < 0 || b < 0 || c1 < 0 || c2 < 0)
{ xprintf("Usage:\n");
xprintf("genrmf [-seed seed] -a frame_size -b depth\n");
xprintf(" -c1 cap_range1 -c2 cap_range2\n");
}
else
{ parm[1] = seed;
parm[2] = a;
parm[3] = b;
parm[4] = c1;
parm[5] = c2;
glp_rmfgen(NULL, NULL, NULL, 0, parm);
}
return 0;
}
#endif
/* eof */