You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
148 lines
5.6 KiB
148 lines
5.6 KiB
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2010 Benoit Jacob <jacob.benoit.1@gmail.com>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
#ifndef EIGEN_BIDIAGONALIZATION_H
|
|
#define EIGEN_BIDIAGONALIZATION_H
|
|
|
|
namespace Eigen {
|
|
|
|
namespace internal {
|
|
// UpperBidiagonalization will probably be replaced by a Bidiagonalization class, don't want to make it stable API.
|
|
// At the same time, it's useful to keep for now as it's about the only thing that is testing the BandMatrix class.
|
|
|
|
template<typename _MatrixType> class UpperBidiagonalization
|
|
{
|
|
public:
|
|
|
|
typedef _MatrixType MatrixType;
|
|
enum {
|
|
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
|
|
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
|
|
ColsAtCompileTimeMinusOne = internal::decrement_size<ColsAtCompileTime>::ret
|
|
};
|
|
typedef typename MatrixType::Scalar Scalar;
|
|
typedef typename MatrixType::RealScalar RealScalar;
|
|
typedef typename MatrixType::Index Index;
|
|
typedef Matrix<Scalar, 1, ColsAtCompileTime> RowVectorType;
|
|
typedef Matrix<Scalar, RowsAtCompileTime, 1> ColVectorType;
|
|
typedef BandMatrix<RealScalar, ColsAtCompileTime, ColsAtCompileTime, 1, 0> BidiagonalType;
|
|
typedef Matrix<Scalar, ColsAtCompileTime, 1> DiagVectorType;
|
|
typedef Matrix<Scalar, ColsAtCompileTimeMinusOne, 1> SuperDiagVectorType;
|
|
typedef HouseholderSequence<
|
|
const MatrixType,
|
|
CwiseUnaryOp<internal::scalar_conjugate_op<Scalar>, const Diagonal<const MatrixType,0> >
|
|
> HouseholderUSequenceType;
|
|
typedef HouseholderSequence<
|
|
const MatrixType,
|
|
Diagonal<const MatrixType,1>,
|
|
OnTheRight
|
|
> HouseholderVSequenceType;
|
|
|
|
/**
|
|
* \brief Default Constructor.
|
|
*
|
|
* The default constructor is useful in cases in which the user intends to
|
|
* perform decompositions via Bidiagonalization::compute(const MatrixType&).
|
|
*/
|
|
UpperBidiagonalization() : m_householder(), m_bidiagonal(), m_isInitialized(false) {}
|
|
|
|
UpperBidiagonalization(const MatrixType& matrix)
|
|
: m_householder(matrix.rows(), matrix.cols()),
|
|
m_bidiagonal(matrix.cols(), matrix.cols()),
|
|
m_isInitialized(false)
|
|
{
|
|
compute(matrix);
|
|
}
|
|
|
|
UpperBidiagonalization& compute(const MatrixType& matrix);
|
|
|
|
const MatrixType& householder() const { return m_householder; }
|
|
const BidiagonalType& bidiagonal() const { return m_bidiagonal; }
|
|
|
|
const HouseholderUSequenceType householderU() const
|
|
{
|
|
eigen_assert(m_isInitialized && "UpperBidiagonalization is not initialized.");
|
|
return HouseholderUSequenceType(m_householder, m_householder.diagonal().conjugate());
|
|
}
|
|
|
|
const HouseholderVSequenceType householderV() // const here gives nasty errors and i'm lazy
|
|
{
|
|
eigen_assert(m_isInitialized && "UpperBidiagonalization is not initialized.");
|
|
return HouseholderVSequenceType(m_householder, m_householder.const_derived().template diagonal<1>())
|
|
.setLength(m_householder.cols()-1)
|
|
.setShift(1);
|
|
}
|
|
|
|
protected:
|
|
MatrixType m_householder;
|
|
BidiagonalType m_bidiagonal;
|
|
bool m_isInitialized;
|
|
};
|
|
|
|
template<typename _MatrixType>
|
|
UpperBidiagonalization<_MatrixType>& UpperBidiagonalization<_MatrixType>::compute(const _MatrixType& matrix)
|
|
{
|
|
Index rows = matrix.rows();
|
|
Index cols = matrix.cols();
|
|
|
|
eigen_assert(rows >= cols && "UpperBidiagonalization is only for matrices satisfying rows>=cols.");
|
|
|
|
m_householder = matrix;
|
|
|
|
ColVectorType temp(rows);
|
|
|
|
for (Index k = 0; /* breaks at k==cols-1 below */ ; ++k)
|
|
{
|
|
Index remainingRows = rows - k;
|
|
Index remainingCols = cols - k - 1;
|
|
|
|
// construct left householder transform in-place in m_householder
|
|
m_householder.col(k).tail(remainingRows)
|
|
.makeHouseholderInPlace(m_householder.coeffRef(k,k),
|
|
m_bidiagonal.template diagonal<0>().coeffRef(k));
|
|
// apply householder transform to remaining part of m_householder on the left
|
|
m_householder.bottomRightCorner(remainingRows, remainingCols)
|
|
.applyHouseholderOnTheLeft(m_householder.col(k).tail(remainingRows-1),
|
|
m_householder.coeff(k,k),
|
|
temp.data());
|
|
|
|
if(k == cols-1) break;
|
|
|
|
// construct right householder transform in-place in m_householder
|
|
m_householder.row(k).tail(remainingCols)
|
|
.makeHouseholderInPlace(m_householder.coeffRef(k,k+1),
|
|
m_bidiagonal.template diagonal<1>().coeffRef(k));
|
|
// apply householder transform to remaining part of m_householder on the left
|
|
m_householder.bottomRightCorner(remainingRows-1, remainingCols)
|
|
.applyHouseholderOnTheRight(m_householder.row(k).tail(remainingCols-1).transpose(),
|
|
m_householder.coeff(k,k+1),
|
|
temp.data());
|
|
}
|
|
m_isInitialized = true;
|
|
return *this;
|
|
}
|
|
|
|
#if 0
|
|
/** \return the Householder QR decomposition of \c *this.
|
|
*
|
|
* \sa class Bidiagonalization
|
|
*/
|
|
template<typename Derived>
|
|
const UpperBidiagonalization<typename MatrixBase<Derived>::PlainObject>
|
|
MatrixBase<Derived>::bidiagonalization() const
|
|
{
|
|
return UpperBidiagonalization<PlainObject>(eval());
|
|
}
|
|
#endif
|
|
|
|
} // end namespace internal
|
|
|
|
} // end namespace Eigen
|
|
|
|
#endif // EIGEN_BIDIAGONALIZATION_H
|