You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

350 lines
12 KiB

// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
// discard stack allocation as that too bypasses malloc
#define EIGEN_STACK_ALLOCATION_LIMIT 0
#define EIGEN_RUNTIME_NO_MALLOC
#include "main.h"
#include <Eigen/SVD>
template<typename MatrixType, int QRPreconditioner>
void jacobisvd_check_full(const MatrixType& m, const JacobiSVD<MatrixType, QRPreconditioner>& svd)
{
typedef typename MatrixType::Index Index;
Index rows = m.rows();
Index cols = m.cols();
enum {
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
ColsAtCompileTime = MatrixType::ColsAtCompileTime
};
typedef typename MatrixType::Scalar Scalar;
typedef typename NumTraits<Scalar>::Real RealScalar;
typedef Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime> MatrixUType;
typedef Matrix<Scalar, ColsAtCompileTime, ColsAtCompileTime> MatrixVType;
typedef Matrix<Scalar, RowsAtCompileTime, 1> ColVectorType;
typedef Matrix<Scalar, ColsAtCompileTime, 1> InputVectorType;
MatrixType sigma = MatrixType::Zero(rows,cols);
sigma.diagonal() = svd.singularValues().template cast<Scalar>();
MatrixUType u = svd.matrixU();
MatrixVType v = svd.matrixV();
VERIFY_IS_APPROX(m, u * sigma * v.adjoint());
VERIFY_IS_UNITARY(u);
VERIFY_IS_UNITARY(v);
}
template<typename MatrixType, int QRPreconditioner>
void jacobisvd_compare_to_full(const MatrixType& m,
unsigned int computationOptions,
const JacobiSVD<MatrixType, QRPreconditioner>& referenceSvd)
{
typedef typename MatrixType::Index Index;
Index rows = m.rows();
Index cols = m.cols();
Index diagSize = (std::min)(rows, cols);
JacobiSVD<MatrixType, QRPreconditioner> svd(m, computationOptions);
VERIFY_IS_APPROX(svd.singularValues(), referenceSvd.singularValues());
if(computationOptions & ComputeFullU)
VERIFY_IS_APPROX(svd.matrixU(), referenceSvd.matrixU());
if(computationOptions & ComputeThinU)
VERIFY_IS_APPROX(svd.matrixU(), referenceSvd.matrixU().leftCols(diagSize));
if(computationOptions & ComputeFullV)
VERIFY_IS_APPROX(svd.matrixV(), referenceSvd.matrixV());
if(computationOptions & ComputeThinV)
VERIFY_IS_APPROX(svd.matrixV(), referenceSvd.matrixV().leftCols(diagSize));
}
template<typename MatrixType, int QRPreconditioner>
void jacobisvd_solve(const MatrixType& m, unsigned int computationOptions)
{
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::Index Index;
Index rows = m.rows();
Index cols = m.cols();
enum {
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
ColsAtCompileTime = MatrixType::ColsAtCompileTime
};
typedef Matrix<Scalar, RowsAtCompileTime, Dynamic> RhsType;
typedef Matrix<Scalar, ColsAtCompileTime, Dynamic> SolutionType;
RhsType rhs = RhsType::Random(rows, internal::random<Index>(1, cols));
JacobiSVD<MatrixType, QRPreconditioner> svd(m, computationOptions);
SolutionType x = svd.solve(rhs);
// evaluate normal equation which works also for least-squares solutions
VERIFY_IS_APPROX(m.adjoint()*m*x,m.adjoint()*rhs);
}
template<typename MatrixType, int QRPreconditioner>
void jacobisvd_test_all_computation_options(const MatrixType& m)
{
if (QRPreconditioner == NoQRPreconditioner && m.rows() != m.cols())
return;
JacobiSVD<MatrixType, QRPreconditioner> fullSvd(m, ComputeFullU|ComputeFullV);
jacobisvd_check_full(m, fullSvd);
jacobisvd_solve<MatrixType, QRPreconditioner>(m, ComputeFullU | ComputeFullV);
if(QRPreconditioner == FullPivHouseholderQRPreconditioner)
return;
jacobisvd_compare_to_full(m, ComputeFullU, fullSvd);
jacobisvd_compare_to_full(m, ComputeFullV, fullSvd);
jacobisvd_compare_to_full(m, 0, fullSvd);
if (MatrixType::ColsAtCompileTime == Dynamic) {
// thin U/V are only available with dynamic number of columns
jacobisvd_compare_to_full(m, ComputeFullU|ComputeThinV, fullSvd);
jacobisvd_compare_to_full(m, ComputeThinV, fullSvd);
jacobisvd_compare_to_full(m, ComputeThinU|ComputeFullV, fullSvd);
jacobisvd_compare_to_full(m, ComputeThinU , fullSvd);
jacobisvd_compare_to_full(m, ComputeThinU|ComputeThinV, fullSvd);
jacobisvd_solve<MatrixType, QRPreconditioner>(m, ComputeFullU | ComputeThinV);
jacobisvd_solve<MatrixType, QRPreconditioner>(m, ComputeThinU | ComputeFullV);
jacobisvd_solve<MatrixType, QRPreconditioner>(m, ComputeThinU | ComputeThinV);
// test reconstruction
typedef typename MatrixType::Index Index;
Index diagSize = (std::min)(m.rows(), m.cols());
JacobiSVD<MatrixType, QRPreconditioner> svd(m, ComputeThinU | ComputeThinV);
VERIFY_IS_APPROX(m, svd.matrixU().leftCols(diagSize) * svd.singularValues().asDiagonal() * svd.matrixV().leftCols(diagSize).adjoint());
}
}
template<typename MatrixType>
void jacobisvd(const MatrixType& a = MatrixType(), bool pickrandom = true)
{
MatrixType m = pickrandom ? MatrixType::Random(a.rows(), a.cols()) : a;
jacobisvd_test_all_computation_options<MatrixType, FullPivHouseholderQRPreconditioner>(m);
jacobisvd_test_all_computation_options<MatrixType, ColPivHouseholderQRPreconditioner>(m);
jacobisvd_test_all_computation_options<MatrixType, HouseholderQRPreconditioner>(m);
jacobisvd_test_all_computation_options<MatrixType, NoQRPreconditioner>(m);
}
template<typename MatrixType> void jacobisvd_verify_assert(const MatrixType& m)
{
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::Index Index;
Index rows = m.rows();
Index cols = m.cols();
enum {
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
ColsAtCompileTime = MatrixType::ColsAtCompileTime
};
typedef Matrix<Scalar, RowsAtCompileTime, 1> RhsType;
RhsType rhs(rows);
JacobiSVD<MatrixType> svd;
VERIFY_RAISES_ASSERT(svd.matrixU())
VERIFY_RAISES_ASSERT(svd.singularValues())
VERIFY_RAISES_ASSERT(svd.matrixV())
VERIFY_RAISES_ASSERT(svd.solve(rhs))
MatrixType a = MatrixType::Zero(rows, cols);
a.setZero();
svd.compute(a, 0);
VERIFY_RAISES_ASSERT(svd.matrixU())
VERIFY_RAISES_ASSERT(svd.matrixV())
svd.singularValues();
VERIFY_RAISES_ASSERT(svd.solve(rhs))
if (ColsAtCompileTime == Dynamic)
{
svd.compute(a, ComputeThinU);
svd.matrixU();
VERIFY_RAISES_ASSERT(svd.matrixV())
VERIFY_RAISES_ASSERT(svd.solve(rhs))
svd.compute(a, ComputeThinV);
svd.matrixV();
VERIFY_RAISES_ASSERT(svd.matrixU())
VERIFY_RAISES_ASSERT(svd.solve(rhs))
JacobiSVD<MatrixType, FullPivHouseholderQRPreconditioner> svd_fullqr;
VERIFY_RAISES_ASSERT(svd_fullqr.compute(a, ComputeFullU|ComputeThinV))
VERIFY_RAISES_ASSERT(svd_fullqr.compute(a, ComputeThinU|ComputeThinV))
VERIFY_RAISES_ASSERT(svd_fullqr.compute(a, ComputeThinU|ComputeFullV))
}
else
{
VERIFY_RAISES_ASSERT(svd.compute(a, ComputeThinU))
VERIFY_RAISES_ASSERT(svd.compute(a, ComputeThinV))
}
}
template<typename MatrixType>
void jacobisvd_method()
{
enum { Size = MatrixType::RowsAtCompileTime };
typedef typename MatrixType::RealScalar RealScalar;
typedef Matrix<RealScalar, Size, 1> RealVecType;
MatrixType m = MatrixType::Identity();
VERIFY_IS_APPROX(m.jacobiSvd().singularValues(), RealVecType::Ones());
VERIFY_RAISES_ASSERT(m.jacobiSvd().matrixU());
VERIFY_RAISES_ASSERT(m.jacobiSvd().matrixV());
VERIFY_IS_APPROX(m.jacobiSvd(ComputeFullU|ComputeFullV).solve(m), m);
}
// work around stupid msvc error when constructing at compile time an expression that involves
// a division by zero, even if the numeric type has floating point
template<typename Scalar>
EIGEN_DONT_INLINE Scalar zero() { return Scalar(0); }
// workaround aggressive optimization in ICC
template<typename T> EIGEN_DONT_INLINE T sub(T a, T b) { return a - b; }
template<typename MatrixType>
void jacobisvd_inf_nan()
{
// all this function does is verify we don't iterate infinitely on nan/inf values
JacobiSVD<MatrixType> svd;
typedef typename MatrixType::Scalar Scalar;
Scalar some_inf = Scalar(1) / zero<Scalar>();
VERIFY(sub(some_inf, some_inf) != sub(some_inf, some_inf));
svd.compute(MatrixType::Constant(10,10,some_inf), ComputeFullU | ComputeFullV);
Scalar some_nan = zero<Scalar>() / zero<Scalar>();
VERIFY(some_nan != some_nan);
svd.compute(MatrixType::Constant(10,10,some_nan), ComputeFullU | ComputeFullV);
MatrixType m = MatrixType::Zero(10,10);
m(internal::random<int>(0,9), internal::random<int>(0,9)) = some_inf;
svd.compute(m, ComputeFullU | ComputeFullV);
m = MatrixType::Zero(10,10);
m(internal::random<int>(0,9), internal::random<int>(0,9)) = some_nan;
svd.compute(m, ComputeFullU | ComputeFullV);
}
// Regression test for bug 286: JacobiSVD loops indefinitely with some
// matrices containing denormal numbers.
void jacobisvd_bug286()
{
#if defined __INTEL_COMPILER
// shut up warning #239: floating point underflow
#pragma warning push
#pragma warning disable 239
#endif
Matrix2d M;
M << -7.90884e-313, -4.94e-324,
0, 5.60844e-313;
#if defined __INTEL_COMPILER
#pragma warning pop
#endif
JacobiSVD<Matrix2d> svd;
svd.compute(M); // just check we don't loop indefinitely
}
void jacobisvd_preallocate()
{
Vector3f v(3.f, 2.f, 1.f);
MatrixXf m = v.asDiagonal();
internal::set_is_malloc_allowed(false);
VERIFY_RAISES_ASSERT(VectorXf v(10);)
JacobiSVD<MatrixXf> svd;
internal::set_is_malloc_allowed(true);
svd.compute(m);
VERIFY_IS_APPROX(svd.singularValues(), v);
JacobiSVD<MatrixXf> svd2(3,3);
internal::set_is_malloc_allowed(false);
svd2.compute(m);
internal::set_is_malloc_allowed(true);
VERIFY_IS_APPROX(svd2.singularValues(), v);
VERIFY_RAISES_ASSERT(svd2.matrixU());
VERIFY_RAISES_ASSERT(svd2.matrixV());
svd2.compute(m, ComputeFullU | ComputeFullV);
VERIFY_IS_APPROX(svd2.matrixU(), Matrix3f::Identity());
VERIFY_IS_APPROX(svd2.matrixV(), Matrix3f::Identity());
internal::set_is_malloc_allowed(false);
svd2.compute(m);
internal::set_is_malloc_allowed(true);
JacobiSVD<MatrixXf> svd3(3,3,ComputeFullU|ComputeFullV);
internal::set_is_malloc_allowed(false);
svd2.compute(m);
internal::set_is_malloc_allowed(true);
VERIFY_IS_APPROX(svd2.singularValues(), v);
VERIFY_IS_APPROX(svd2.matrixU(), Matrix3f::Identity());
VERIFY_IS_APPROX(svd2.matrixV(), Matrix3f::Identity());
internal::set_is_malloc_allowed(false);
svd2.compute(m, ComputeFullU|ComputeFullV);
internal::set_is_malloc_allowed(true);
}
void test_jacobisvd()
{
CALL_SUBTEST_3(( jacobisvd_verify_assert(Matrix3f()) ));
CALL_SUBTEST_4(( jacobisvd_verify_assert(Matrix4d()) ));
CALL_SUBTEST_7(( jacobisvd_verify_assert(MatrixXf(10,12)) ));
CALL_SUBTEST_8(( jacobisvd_verify_assert(MatrixXcd(7,5)) ));
for(int i = 0; i < g_repeat; i++) {
Matrix2cd m;
m << 0, 1,
0, 1;
CALL_SUBTEST_1(( jacobisvd(m, false) ));
m << 1, 0,
1, 0;
CALL_SUBTEST_1(( jacobisvd(m, false) ));
Matrix2d n;
n << 0, 0,
0, 0;
CALL_SUBTEST_2(( jacobisvd(n, false) ));
n << 0, 0,
0, 1;
CALL_SUBTEST_2(( jacobisvd(n, false) ));
CALL_SUBTEST_3(( jacobisvd<Matrix3f>() ));
CALL_SUBTEST_4(( jacobisvd<Matrix4d>() ));
CALL_SUBTEST_5(( jacobisvd<Matrix<float,3,5> >() ));
CALL_SUBTEST_6(( jacobisvd<Matrix<double,Dynamic,2> >(Matrix<double,Dynamic,2>(10,2)) ));
int r = internal::random<int>(1, 30),
c = internal::random<int>(1, 30);
CALL_SUBTEST_7(( jacobisvd<MatrixXf>(MatrixXf(r,c)) ));
CALL_SUBTEST_8(( jacobisvd<MatrixXcd>(MatrixXcd(r,c)) ));
(void) r;
(void) c;
// Test on inf/nan matrix
CALL_SUBTEST_7( jacobisvd_inf_nan<MatrixXf>() );
}
CALL_SUBTEST_7(( jacobisvd<MatrixXf>(MatrixXf(internal::random<int>(EIGEN_TEST_MAX_SIZE/4, EIGEN_TEST_MAX_SIZE/2), internal::random<int>(EIGEN_TEST_MAX_SIZE/4, EIGEN_TEST_MAX_SIZE/2))) ));
CALL_SUBTEST_8(( jacobisvd<MatrixXcd>(MatrixXcd(internal::random<int>(EIGEN_TEST_MAX_SIZE/4, EIGEN_TEST_MAX_SIZE/3), internal::random<int>(EIGEN_TEST_MAX_SIZE/4, EIGEN_TEST_MAX_SIZE/3))) ));
// test matrixbase method
CALL_SUBTEST_1(( jacobisvd_method<Matrix2cd>() ));
CALL_SUBTEST_3(( jacobisvd_method<Matrix3f>() ));
// Test problem size constructors
CALL_SUBTEST_7( JacobiSVD<MatrixXf>(10,10) );
// Check that preallocation avoids subsequent mallocs
CALL_SUBTEST_9( jacobisvd_preallocate() );
// Regression check for bug 286
CALL_SUBTEST_2( jacobisvd_bug286() );
}