You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

233 lines
6.0 KiB

//g++-4.4 -DNOMTL -Wl,-rpath /usr/local/lib/oski -L /usr/local/lib/oski/ -l oski -l oski_util -l oski_util_Tid -DOSKI -I ~/Coding/LinearAlgebra/mtl4/ spmv.cpp -I .. -O2 -DNDEBUG -lrt -lm -l oski_mat_CSC_Tid -loskilt && ./a.out r200000 c200000 n100 t1 p1
#define SCALAR double
#include <iostream>
#include <algorithm>
#include "BenchTimer.h"
#include "BenchSparseUtil.h"
#define SPMV_BENCH(CODE) BENCH(t,tries,repeats,CODE);
// #ifdef MKL
//
// #include "mkl_types.h"
// #include "mkl_spblas.h"
//
// template<typename Lhs,typename Rhs,typename Res>
// void mkl_multiply(const Lhs& lhs, const Rhs& rhs, Res& res)
// {
// char n = 'N';
// float alpha = 1;
// char matdescra[6];
// matdescra[0] = 'G';
// matdescra[1] = 0;
// matdescra[2] = 0;
// matdescra[3] = 'C';
// mkl_scscmm(&n, lhs.rows(), rhs.cols(), lhs.cols(), &alpha, matdescra,
// lhs._valuePtr(), lhs._innerIndexPtr(), lhs.outerIndexPtr(),
// pntre, b, &ldb, &beta, c, &ldc);
// // mkl_somatcopy('C', 'T', lhs.rows(), lhs.cols(), 1,
// // lhs._valuePtr(), lhs.rows(), DST, dst_stride);
// }
//
// #endif
int main(int argc, char *argv[])
{
int size = 10000;
int rows = size;
int cols = size;
int nnzPerCol = 40;
int tries = 2;
int repeats = 2;
bool need_help = false;
for(int i = 1; i < argc; i++)
{
if(argv[i][0] == 'r')
{
rows = atoi(argv[i]+1);
}
else if(argv[i][0] == 'c')
{
cols = atoi(argv[i]+1);
}
else if(argv[i][0] == 'n')
{
nnzPerCol = atoi(argv[i]+1);
}
else if(argv[i][0] == 't')
{
tries = atoi(argv[i]+1);
}
else if(argv[i][0] == 'p')
{
repeats = atoi(argv[i]+1);
}
else
{
need_help = true;
}
}
if(need_help)
{
std::cout << argv[0] << " r<nb rows> c<nb columns> n<non zeros per column> t<nb tries> p<nb repeats>\n";
return 1;
}
std::cout << "SpMV " << rows << " x " << cols << " with " << nnzPerCol << " non zeros per column. (" << repeats << " repeats, and " << tries << " tries)\n\n";
EigenSparseMatrix sm(rows,cols);
DenseVector dv(cols), res(rows);
dv.setRandom();
BenchTimer t;
while (nnzPerCol>=4)
{
std::cout << "nnz: " << nnzPerCol << "\n";
sm.setZero();
fillMatrix2(nnzPerCol, rows, cols, sm);
// dense matrices
#ifdef DENSEMATRIX
{
DenseMatrix dm(rows,cols), (rows,cols);
eiToDense(sm, dm);
SPMV_BENCH(res = dm * sm);
std::cout << "Dense " << t.value()/repeats << "\t";
SPMV_BENCHres = dm.transpose() * sm);
std::cout << t.value()/repeats << endl;
}
#endif
// eigen sparse matrices
{
SPMV_BENCH(res.noalias() += sm * dv; )
std::cout << "Eigen " << t.value()/repeats << "\t";
SPMV_BENCH(res.noalias() += sm.transpose() * dv; )
std::cout << t.value()/repeats << endl;
}
// CSparse
#ifdef CSPARSE
{
std::cout << "CSparse \n";
cs *csm;
eiToCSparse(sm, csm);
// BENCH();
// timer.stop();
// std::cout << " a * b:\t" << timer.value() << endl;
// BENCH( { m3 = cs_sorted_multiply2(m1, m2); cs_spfree(m3); } );
// std::cout << " a * b:\t" << timer.value() << endl;
}
#endif
#ifdef OSKI
{
oski_matrix_t om;
oski_vecview_t ov, ores;
oski_Init();
om = oski_CreateMatCSC(sm._outerIndexPtr(), sm._innerIndexPtr(), sm._valuePtr(), rows, cols,
SHARE_INPUTMAT, 1, INDEX_ZERO_BASED);
ov = oski_CreateVecView(dv.data(), cols, STRIDE_UNIT);
ores = oski_CreateVecView(res.data(), rows, STRIDE_UNIT);
SPMV_BENCH( oski_MatMult(om, OP_NORMAL, 1, ov, 0, ores) );
std::cout << "OSKI " << t.value()/repeats << "\t";
SPMV_BENCH( oski_MatMult(om, OP_TRANS, 1, ov, 0, ores) );
std::cout << t.value()/repeats << "\n";
// tune
t.reset();
t.start();
oski_SetHintMatMult(om, OP_NORMAL, 1.0, SYMBOLIC_VEC, 0.0, SYMBOLIC_VEC, ALWAYS_TUNE_AGGRESSIVELY);
oski_TuneMat(om);
t.stop();
double tuning = t.value();
SPMV_BENCH( oski_MatMult(om, OP_NORMAL, 1, ov, 0, ores) );
std::cout << "OSKI tuned " << t.value()/repeats << "\t";
SPMV_BENCH( oski_MatMult(om, OP_TRANS, 1, ov, 0, ores) );
std::cout << t.value()/repeats << "\t(" << tuning << ")\n";
oski_DestroyMat(om);
oski_DestroyVecView(ov);
oski_DestroyVecView(ores);
oski_Close();
}
#endif
#ifndef NOUBLAS
{
using namespace boost::numeric;
UblasMatrix um(rows,cols);
eiToUblas(sm, um);
boost::numeric::ublas::vector<Scalar> uv(cols), ures(rows);
Map<Matrix<Scalar,Dynamic,1> >(&uv[0], cols) = dv;
Map<Matrix<Scalar,Dynamic,1> >(&ures[0], rows) = res;
SPMV_BENCH(ublas::axpy_prod(um, uv, ures, true));
std::cout << "ublas " << t.value()/repeats << "\t";
SPMV_BENCH(ublas::axpy_prod(boost::numeric::ublas::trans(um), uv, ures, true));
std::cout << t.value()/repeats << endl;
}
#endif
// GMM++
#ifndef NOGMM
{
GmmSparse gm(rows,cols);
eiToGmm(sm, gm);
std::vector<Scalar> gv(cols), gres(rows);
Map<Matrix<Scalar,Dynamic,1> >(&gv[0], cols) = dv;
Map<Matrix<Scalar,Dynamic,1> >(&gres[0], rows) = res;
SPMV_BENCH(gmm::mult(gm, gv, gres));
std::cout << "GMM++ " << t.value()/repeats << "\t";
SPMV_BENCH(gmm::mult(gmm::transposed(gm), gv, gres));
std::cout << t.value()/repeats << endl;
}
#endif
// MTL4
#ifndef NOMTL
{
MtlSparse mm(rows,cols);
eiToMtl(sm, mm);
mtl::dense_vector<Scalar> mv(cols, 1.0);
mtl::dense_vector<Scalar> mres(rows, 1.0);
SPMV_BENCH(mres = mm * mv);
std::cout << "MTL4 " << t.value()/repeats << "\t";
SPMV_BENCH(mres = trans(mm) * mv);
std::cout << t.value()/repeats << endl;
}
#endif
std::cout << "\n";
if(nnzPerCol==1)
break;
nnzPerCol -= nnzPerCol/2;
}
return 0;
}