You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
195 lines
16 KiB
195 lines
16 KiB
#include "src/modelchecker/prctl/helper/SymbolicDtmcPrctlHelper.h"
|
|
|
|
#include "src/storage/dd/DdType.h"
|
|
#include "src/storage/dd/cudd/CuddDdManager.h"
|
|
#include "src/storage/dd/cudd/CuddAdd.h"
|
|
#include "src/storage/dd/cudd/CuddBdd.h"
|
|
#include "src/storage/dd/cudd/CuddOdd.h"
|
|
|
|
#include "src/solver/SymbolicLinearEquationSolver.h"
|
|
|
|
#include "src/models/symbolic/StandardRewardModel.h"
|
|
|
|
#include "src/utility/graph.h"
|
|
#include "src/utility/constants.h"
|
|
|
|
#include "src/exceptions/InvalidPropertyException.h"
|
|
|
|
namespace storm {
|
|
namespace modelchecker {
|
|
namespace helper {
|
|
|
|
template<storm::dd::DdType DdType, typename ValueType>
|
|
storm::dd::Add<DdType> SymbolicDtmcPrctlHelper<DdType, ValueType>::computeUntilProbabilities(storm::models::symbolic::Model<DdType> const& model, storm::dd::Add<DdType> const& transitionMatrix, storm::dd::Bdd<DdType> const& phiStates, storm::dd::Bdd<DdType> const& psiStates, bool qualitative, storm::utility::solver::SymbolicLinearEquationSolverFactory<DdType, ValueType> const& linearEquationSolverFactory) {
|
|
// We need to identify the states which have to be taken out of the matrix, i.e. all states that have
|
|
// probability 0 and 1 of satisfying the until-formula.
|
|
std::pair<storm::dd::Bdd<DdType>, storm::dd::Bdd<DdType>> statesWithProbability01 = storm::utility::graph::performProb01(model, transitionMatrix, phiStates, psiStates);
|
|
storm::dd::Bdd<DdType> maybeStates = !statesWithProbability01.first && !statesWithProbability01.second && model.getReachableStates();
|
|
|
|
// Perform some logging.
|
|
STORM_LOG_INFO("Found " << statesWithProbability01.first.getNonZeroCount() << " 'no' states.");
|
|
STORM_LOG_INFO("Found " << statesWithProbability01.second.getNonZeroCount() << " 'yes' states.");
|
|
STORM_LOG_INFO("Found " << maybeStates.getNonZeroCount() << " 'maybe' states.");
|
|
|
|
// Check whether we need to compute exact probabilities for some states.
|
|
if (qualitative) {
|
|
// Set the values for all maybe-states to 0.5 to indicate that their probability values are neither 0 nor 1.
|
|
return statesWithProbability01.second.toAdd() + maybeStates.toAdd() * model.getManager().getConstant(0.5);
|
|
} else {
|
|
// If there are maybe states, we need to solve an equation system.
|
|
if (!maybeStates.isZero()) {
|
|
// Create the ODD for the translation between symbolic and explicit storage.
|
|
storm::dd::Odd<DdType> odd(maybeStates);
|
|
|
|
// Create the matrix and the vector for the equation system.
|
|
storm::dd::Add<DdType> maybeStatesAdd = maybeStates.toAdd();
|
|
|
|
// Start by cutting away all rows that do not belong to maybe states. Note that this leaves columns targeting
|
|
// non-maybe states in the matrix.
|
|
storm::dd::Add<DdType> submatrix = transitionMatrix * maybeStatesAdd;
|
|
|
|
// Then compute the vector that contains the one-step probabilities to a state with probability 1 for all
|
|
// maybe states.
|
|
storm::dd::Add<DdType> prob1StatesAsColumn = statesWithProbability01.second.toAdd();
|
|
prob1StatesAsColumn = prob1StatesAsColumn.swapVariables(model.getRowColumnMetaVariablePairs());
|
|
storm::dd::Add<DdType> subvector = submatrix * prob1StatesAsColumn;
|
|
subvector = subvector.sumAbstract(model.getColumnVariables());
|
|
|
|
// Finally cut away all columns targeting non-maybe states and convert the matrix into the matrix needed
|
|
// for solving the equation system (i.e. compute (I-A)).
|
|
submatrix *= maybeStatesAdd.swapVariables(model.getRowColumnMetaVariablePairs());
|
|
submatrix = (model.getRowColumnIdentity() * maybeStatesAdd) - submatrix;
|
|
|
|
// Solve the equation system.
|
|
std::unique_ptr<storm::solver::SymbolicLinearEquationSolver<DdType, ValueType>> solver = linearEquationSolverFactory.create(submatrix, maybeStates, model.getRowVariables(), model.getColumnVariables(), model.getRowColumnMetaVariablePairs());
|
|
storm::dd::Add<DdType> result = solver->solveEquationSystem(model.getManager().getConstant(0.5) * maybeStatesAdd, subvector);
|
|
|
|
return statesWithProbability01.second.toAdd() + result;
|
|
} else {
|
|
return statesWithProbability01.second.toAdd();
|
|
}
|
|
}
|
|
}
|
|
|
|
template<storm::dd::DdType DdType, typename ValueType>
|
|
storm::dd::Add<DdType> SymbolicDtmcPrctlHelper<DdType, ValueType>::computeNextProbabilities(storm::models::symbolic::Model<DdType> const& model, storm::dd::Add<DdType> const& transitionMatrix, storm::dd::Bdd<DdType> const& nextStates) {
|
|
storm::dd::Add<DdType> result = transitionMatrix * nextStates.swapVariables(model.getRowColumnMetaVariablePairs()).toAdd();
|
|
return result.sumAbstract(model.getColumnVariables());
|
|
}
|
|
|
|
template<storm::dd::DdType DdType, typename ValueType>
|
|
storm::dd::Add<DdType> SymbolicDtmcPrctlHelper<DdType, ValueType>::computeBoundedUntilProbabilities(storm::models::symbolic::Model<DdType> const& model, storm::dd::Add<DdType> const& transitionMatrix, storm::dd::Bdd<DdType> const& phiStates, storm::dd::Bdd<DdType> const& psiStates, uint_fast64_t stepBound, storm::utility::solver::SymbolicLinearEquationSolverFactory<DdType, ValueType> const& linearEquationSolverFactory) {
|
|
// We need to identify the states which have to be taken out of the matrix, i.e. all states that have
|
|
// probability 0 or 1 of satisfying the until-formula.
|
|
storm::dd::Bdd<DdType> statesWithProbabilityGreater0 = storm::utility::graph::performProbGreater0(model, transitionMatrix.notZero(), phiStates, psiStates, stepBound);
|
|
storm::dd::Bdd<DdType> maybeStates = statesWithProbabilityGreater0 && !psiStates && model.getReachableStates();
|
|
|
|
// If there are maybe states, we need to perform matrix-vector multiplications.
|
|
if (!maybeStates.isZero()) {
|
|
// Create the ODD for the translation between symbolic and explicit storage.
|
|
storm::dd::Odd<DdType> odd(maybeStates);
|
|
|
|
// Create the matrix and the vector for the equation system.
|
|
storm::dd::Add<DdType> maybeStatesAdd = maybeStates.toAdd();
|
|
|
|
// Start by cutting away all rows that do not belong to maybe states. Note that this leaves columns targeting
|
|
// non-maybe states in the matrix.
|
|
storm::dd::Add<DdType> submatrix = transitionMatrix * maybeStatesAdd;
|
|
|
|
// Then compute the vector that contains the one-step probabilities to a state with probability 1 for all
|
|
// maybe states.
|
|
storm::dd::Add<DdType> prob1StatesAsColumn = psiStates.toAdd().swapVariables(model.getRowColumnMetaVariablePairs());
|
|
storm::dd::Add<DdType> subvector = (submatrix * prob1StatesAsColumn).sumAbstract(model.getColumnVariables());
|
|
|
|
// Finally cut away all columns targeting non-maybe states.
|
|
submatrix *= maybeStatesAdd.swapVariables(model.getRowColumnMetaVariablePairs());
|
|
|
|
// Perform the matrix-vector multiplication.
|
|
std::unique_ptr<storm::solver::SymbolicLinearEquationSolver<DdType, ValueType>> solver = linearEquationSolverFactory.create(submatrix, maybeStates, model.getRowVariables(), model.getColumnVariables(), model.getRowColumnMetaVariablePairs());
|
|
storm::dd::Add<DdType> result = solver->performMatrixVectorMultiplication(model.getManager().getAddZero(), &subvector, stepBound);
|
|
|
|
return psiStates.toAdd() + result;
|
|
} else {
|
|
return psiStates.toAdd();
|
|
}
|
|
}
|
|
|
|
template<storm::dd::DdType DdType, typename ValueType>
|
|
storm::dd::Add<DdType> SymbolicDtmcPrctlHelper<DdType, ValueType>::computeCumulativeRewards(storm::models::symbolic::Model<DdType> const& model, storm::dd::Add<DdType> const& transitionMatrix, RewardModelType const& rewardModel, uint_fast64_t stepBound, storm::utility::solver::SymbolicLinearEquationSolverFactory<DdType, ValueType> const& linearEquationSolverFactory) {
|
|
// Only compute the result if the model has at least one reward this->getModel().
|
|
STORM_LOG_THROW(!rewardModel.empty(), storm::exceptions::InvalidPropertyException, "Missing reward model for formula. Skipping formula.");
|
|
|
|
// Compute the reward vector to add in each step based on the available reward models.
|
|
storm::dd::Add<DdType> totalRewardVector = rewardModel.getTotalRewardVector(transitionMatrix, model.getColumnVariables());
|
|
|
|
// Perform the matrix-vector multiplication.
|
|
std::unique_ptr<storm::solver::SymbolicLinearEquationSolver<DdType, ValueType>> solver = linearEquationSolverFactory.create(transitionMatrix, model.getReachableStates(), model.getRowVariables(), model.getColumnVariables(), model.getRowColumnMetaVariablePairs());
|
|
return solver->performMatrixVectorMultiplication(model.getManager().getAddZero(), &totalRewardVector, stepBound);
|
|
}
|
|
|
|
template<storm::dd::DdType DdType, typename ValueType>
|
|
storm::dd::Add<DdType> SymbolicDtmcPrctlHelper<DdType, ValueType>::computeInstantaneousRewards(storm::models::symbolic::Model<DdType> const& model, storm::dd::Add<DdType> const& transitionMatrix, RewardModelType const& rewardModel, uint_fast64_t stepBound, storm::utility::solver::SymbolicLinearEquationSolverFactory<DdType, ValueType> const& linearEquationSolverFactory) {
|
|
// Only compute the result if the model has at least one reward this->getModel().
|
|
STORM_LOG_THROW(rewardModel.hasStateRewards(), storm::exceptions::InvalidPropertyException, "Missing reward model for formula. Skipping formula.");
|
|
|
|
// Perform the matrix-vector multiplication.
|
|
std::unique_ptr<storm::solver::SymbolicLinearEquationSolver<DdType, ValueType>> solver = linearEquationSolverFactory.create(transitionMatrix, model.getReachableStates(), model.getRowVariables(), model.getColumnVariables(), model.getRowColumnMetaVariablePairs());
|
|
return solver->performMatrixVectorMultiplication(rewardModel.getStateRewardVector(), nullptr, stepBound);
|
|
}
|
|
|
|
template<storm::dd::DdType DdType, typename ValueType>
|
|
storm::dd::Add<DdType> SymbolicDtmcPrctlHelper<DdType, ValueType>::computeReachabilityRewards(storm::models::symbolic::Model<DdType> const& model, storm::dd::Add<DdType> const& transitionMatrix, RewardModelType const& rewardModel, storm::dd::Bdd<DdType> const& targetStates, bool qualitative, storm::utility::solver::SymbolicLinearEquationSolverFactory<DdType, ValueType> const& linearEquationSolverFactory) {
|
|
|
|
// Only compute the result if there is at least one reward model.
|
|
STORM_LOG_THROW(!rewardModel.empty(), storm::exceptions::InvalidPropertyException, "Missing reward model for formula. Skipping formula.");
|
|
|
|
// Determine which states have a reward of infinity by definition.
|
|
storm::dd::Bdd<DdType> infinityStates = storm::utility::graph::performProb1(model, transitionMatrix.notZero(), model.getReachableStates(), targetStates);
|
|
infinityStates = !infinityStates && model.getReachableStates();
|
|
storm::dd::Bdd<DdType> maybeStates = (!targetStates && !infinityStates) && model.getReachableStates();
|
|
STORM_LOG_INFO("Found " << infinityStates.getNonZeroCount() << " 'infinity' states.");
|
|
STORM_LOG_INFO("Found " << targetStates.getNonZeroCount() << " 'target' states.");
|
|
STORM_LOG_INFO("Found " << maybeStates.getNonZeroCount() << " 'maybe' states.");
|
|
|
|
// Check whether we need to compute exact rewards for some states.
|
|
if (qualitative) {
|
|
// Set the values for all maybe-states to 1 to indicate that their reward values
|
|
// are neither 0 nor infinity.
|
|
return infinityStates.toAdd() * model.getManager().getConstant(storm::utility::infinity<ValueType>()) + maybeStates.toAdd() * model.getManager().getConstant(storm::utility::one<ValueType>());
|
|
} else {
|
|
// If there are maybe states, we need to solve an equation system.
|
|
if (!maybeStates.isZero()) {
|
|
// Create the ODD for the translation between symbolic and explicit storage.
|
|
storm::dd::Odd<DdType> odd(maybeStates);
|
|
|
|
// Create the matrix and the vector for the equation system.
|
|
storm::dd::Add<DdType> maybeStatesAdd = maybeStates.toAdd();
|
|
|
|
// Start by cutting away all rows that do not belong to maybe states. Note that this leaves columns targeting
|
|
// non-maybe states in the matrix.
|
|
storm::dd::Add<DdType> submatrix = transitionMatrix * maybeStatesAdd;
|
|
|
|
// Then compute the state reward vector to use in the computation.
|
|
storm::dd::Add<DdType> subvector = rewardModel.getTotalRewardVector(submatrix, model.getColumnVariables());
|
|
|
|
// Finally cut away all columns targeting non-maybe states and convert the matrix into the matrix needed
|
|
// for solving the equation system (i.e. compute (I-A)).
|
|
submatrix *= maybeStatesAdd.swapVariables(model.getRowColumnMetaVariablePairs());
|
|
submatrix = (model.getRowColumnIdentity() * maybeStatesAdd) - submatrix;
|
|
|
|
// Solve the equation system.
|
|
std::unique_ptr<storm::solver::SymbolicLinearEquationSolver<DdType, ValueType>> solver = linearEquationSolverFactory.create(submatrix, maybeStates, model.getRowVariables(), model.getColumnVariables(), model.getRowColumnMetaVariablePairs());
|
|
storm::dd::Add<DdType> result = solver->solveEquationSystem(model.getManager().getConstant(0.5) * maybeStatesAdd, subvector);
|
|
|
|
return infinityStates.toAdd() * model.getManager().getConstant(storm::utility::infinity<ValueType>()) + result;
|
|
} else {
|
|
return infinityStates.toAdd() * model.getManager().getConstant(storm::utility::infinity<ValueType>());
|
|
}
|
|
}
|
|
}
|
|
|
|
template class SymbolicDtmcPrctlHelper<storm::dd::DdType::CUDD, double>;
|
|
|
|
}
|
|
}
|
|
}
|