You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

231 lines
14 KiB

#include "storm/modelchecker/multiobjective/pcaa/SparseMdpRewardBoundedPcaaWeightVectorChecker.h"
#include "storm/adapters/RationalFunctionAdapter.h"
#include "storm/models/sparse/Mdp.h"
#include "storm/models/sparse/StandardRewardModel.h"
#include "storm/utility/macros.h"
#include "storm/utility/vector.h"
#include "storm/logic/Formulas.h"
#include "storm/solver/MinMaxLinearEquationSolver.h"
#include "storm/solver/LinearEquationSolver.h"
#include "storm/exceptions/InvalidPropertyException.h"
#include "storm/exceptions/InvalidOperationException.h"
#include "storm/exceptions/IllegalArgumentException.h"
#include "storm/exceptions/NotSupportedException.h"
#include "storm/exceptions/UnexpectedException.h"
#include "storm/exceptions/UncheckedRequirementException.h"
namespace storm {
namespace modelchecker {
namespace multiobjective {
template <class SparseMdpModelType>
SparseMdpRewardBoundedPcaaWeightVectorChecker<SparseMdpModelType>::SparseMdpRewardBoundedPcaaWeightVectorChecker(SparseMultiObjectivePreprocessorResult<SparseMdpModelType> const& preprocessorResult) : PcaaWeightVectorChecker<SparseMdpModelType>(preprocessorResult.objectives), swAll(true), rewardUnfolding(*preprocessorResult.preprocessedModel, preprocessorResult.objectives) {
STORM_LOG_THROW(preprocessorResult.rewardFinitenessType == SparseMultiObjectivePreprocessorResult<SparseMdpModelType>::RewardFinitenessType::AllFinite, storm::exceptions::NotSupportedException, "There is a scheduler that yields infinite reward for one objective. This is not supported.");
STORM_LOG_THROW(preprocessorResult.preprocessedModel->getInitialStates().getNumberOfSetBits() == 1, storm::exceptions::NotSupportedException, "The model has multiple initial states.");
numSchedChanges = 0;
numCheckedEpochs = 0;
}
template <class SparseMdpModelType>
void SparseMdpRewardBoundedPcaaWeightVectorChecker<SparseMdpModelType>::check(std::vector<ValueType> const& weightVector) {
auto initEpoch = rewardUnfolding.getStartEpoch();
auto epochOrder = rewardUnfolding.getEpochComputationOrder(initEpoch);
EpochCheckingData cachedData;
for (auto const& epoch : epochOrder) {
computeEpochSolution(epoch, weightVector, cachedData);
}
auto solution = rewardUnfolding.getInitialStateResult(initEpoch);
// Todo: we currently assume precise results...
auto solutionIt = solution.begin();
++solutionIt;
underApproxResult = std::vector<ValueType>(solutionIt, solution.end());
overApproxResult = underApproxResult;
}
template <class SparseMdpModelType>
void SparseMdpRewardBoundedPcaaWeightVectorChecker<SparseMdpModelType>::computeEpochSolution(typename MultiDimensionalRewardUnfolding<ValueType, false>::Epoch const& epoch, std::vector<ValueType> const& weightVector, EpochCheckingData& cachedData) {
auto& epochModel = rewardUnfolding.setCurrentEpoch(epoch);
updateCachedData(epochModel, cachedData, weightVector);
++numCheckedEpochs;
swEqBuilding.start();
std::vector<typename MultiDimensionalRewardUnfolding<ValueType, false>::SolutionType> result;
result.reserve(epochModel.epochInStates.getNumberOfSetBits());
uint64_t solutionSize = this->objectives.size() + 1;
// Formulate a min-max equation system max(A*x+b)=x for the weighted sum of the objectives
swAux1.start();
assert(cachedData.bMinMax.capacity() >= epochModel.epochMatrix.getRowCount());
assert(cachedData.xMinMax.size() == epochModel.epochMatrix.getRowGroupCount());
cachedData.bMinMax.assign(epochModel.epochMatrix.getRowCount(), storm::utility::zero<ValueType>());
for (uint64_t objIndex = 0; objIndex < this->objectives.size(); ++objIndex) {
ValueType weight = storm::solver::minimize(this->objectives[objIndex].formula->getOptimalityType()) ? -weightVector[objIndex] : weightVector[objIndex];
if (!storm::utility::isZero(weight)) {
std::vector<ValueType> const& objectiveReward = epochModel.objectiveRewards[objIndex];
for (auto const& choice : epochModel.objectiveRewardFilter[objIndex]) {
cachedData.bMinMax[choice] += weight * objectiveReward[choice];
}
}
}
auto stepSolutionIt = epochModel.stepSolutions.begin();
for (auto const& choice : epochModel.stepChoices) {
cachedData.bMinMax[choice] += stepSolutionIt->front();
++stepSolutionIt;
}
swAux1.stop();
// Invoke the min max solver
swEqBuilding.stop();
swMinMaxSolving.start();
cachedData.minMaxSolver->solveEquations(cachedData.xMinMax, cachedData.bMinMax);
swMinMaxSolving.stop();
swEqBuilding.start();
for (auto const& state : epochModel.epochInStates) {
result.emplace_back();
result.back().reserve(solutionSize);
result.back().push_back(cachedData.xMinMax[state]);
}
// Check whether the linear equation solver needs to be updated
auto const& choices = cachedData.minMaxSolver->getSchedulerChoices();
if (cachedData.schedulerChoices != choices) {
std::vector<uint64_t> choicesTmp = choices;
cachedData.minMaxSolver->setInitialScheduler(std::move(choicesTmp));
swAux2.start();
++numSchedChanges;
cachedData.schedulerChoices = choices;
storm::storage::SparseMatrix<ValueType> subMatrix = epochModel.epochMatrix.selectRowsFromRowGroups(choices, true);
subMatrix.convertToEquationSystem();
storm::solver::GeneralLinearEquationSolverFactory<ValueType> linEqSolverFactory;
cachedData.linEqSolver = linEqSolverFactory.create(std::move(subMatrix));
cachedData.linEqSolver->setCachingEnabled(true);
swAux2.stop();
}
// Formulate for each objective the linear equation system induced by the performed choices
swAux3.start();
assert(cachedData.bLinEq.size() == choices.size());
for (uint64_t objIndex = 0; objIndex < this->objectives.size(); ++objIndex) {
auto const& obj = this->objectives[objIndex];
std::vector<ValueType> const& objectiveReward = epochModel.objectiveRewards[objIndex];
auto rowGroupIndexIt = epochModel.epochMatrix.getRowGroupIndices().begin();
auto choiceIt = choices.begin();
auto stepChoiceIt = epochModel.stepChoices.begin();
auto stepSolutionIt = epochModel.stepSolutions.begin();
for (auto& b_i : cachedData.bLinEq) {
uint64_t i = *rowGroupIndexIt + *choiceIt;
if (epochModel.objectiveRewardFilter[objIndex].get(i)) {
b_i = objectiveReward[i];
} else {
b_i = storm::utility::zero<ValueType>();
}
while (*stepChoiceIt < i) {
++stepChoiceIt;
++stepSolutionIt;
}
if (i == *stepChoiceIt) {
b_i += (*stepSolutionIt)[objIndex + 1];
++stepChoiceIt;
++stepSolutionIt;
}
++rowGroupIndexIt;
++choiceIt;
}
std::vector<ValueType>& x = cachedData.xLinEq[objIndex];
assert(x.size() == choices.size());
auto req = cachedData.linEqSolver->getRequirements();
if (obj.lowerResultBound) {
req.clearLowerBounds();
cachedData.linEqSolver->setLowerBound(*obj.lowerResultBound);
}
if (obj.upperResultBound) {
cachedData.linEqSolver->setUpperBound(*obj.upperResultBound);
req.clearUpperBounds();
}
STORM_LOG_THROW(req.empty(), storm::exceptions::UncheckedRequirementException, "At least one requirement of the LinearEquationSolver was not met.");
swEqBuilding.stop();
swLinEqSolving.start();
cachedData.linEqSolver->solveEquations(x, cachedData.bLinEq);
swLinEqSolving.stop();
swEqBuilding.start();
auto resultIt = result.begin();
for (auto const& state : epochModel.epochInStates) {
resultIt->push_back(x[state]);
++resultIt;
}
}
swEqBuilding.stop();
swAux3.stop();
rewardUnfolding.setSolutionForCurrentEpoch(std::move(result));
}
template <class SparseMdpModelType>
void SparseMdpRewardBoundedPcaaWeightVectorChecker<SparseMdpModelType>::updateCachedData(typename MultiDimensionalRewardUnfolding<ValueType, false>::EpochModel const& epochModel, EpochCheckingData& cachedData, std::vector<ValueType> const& weightVector) {
if (epochModel.epochMatrixChanged) {
swDataUpdate.start();
// Update the cached MinMaxSolver data
cachedData.bMinMax.resize(epochModel.epochMatrix.getRowCount());
cachedData.xMinMax.assign(epochModel.epochMatrix.getRowGroupCount(), storm::utility::zero<ValueType>());
storm::solver::GeneralMinMaxLinearEquationSolverFactory<ValueType> minMaxSolverFactory;
cachedData.minMaxSolver = minMaxSolverFactory.create(epochModel.epochMatrix);
cachedData.minMaxSolver->setTrackScheduler(true);
cachedData.minMaxSolver->setCachingEnabled(true);
auto req = cachedData.minMaxSolver->getRequirements(storm::solver::EquationSystemType::StochasticShortestPath);
req.clearNoEndComponents();
boost::optional<ValueType> lowerBound = this->computeWeightedResultBound(true, weightVector, storm::storage::BitVector(weightVector.size(), true));
if (lowerBound) {
cachedData.minMaxSolver->setLowerBound(lowerBound.get());
req.clearLowerBounds();
}
boost::optional<ValueType> upperBound = this->computeWeightedResultBound(false, weightVector, storm::storage::BitVector(weightVector.size(), true));
if (upperBound) {
cachedData.minMaxSolver->setUpperBound(upperBound.get());
req.clearUpperBounds();
}
STORM_LOG_THROW(req.empty(), storm::exceptions::UncheckedRequirementException, "At least one requirement of the MinMaxSolver was not met.");
cachedData.minMaxSolver->setRequirementsChecked(true);
cachedData.minMaxSolver->setOptimizationDirection(storm::solver::OptimizationDirection::Maximize);
// Clear the scheduler choices so that an update of the linEqSolver is enforced
cachedData.schedulerChoices.clear();
cachedData.schedulerChoices.reserve(epochModel.epochMatrix.getRowGroupCount());
// Update data for linear equation solving
cachedData.bLinEq.resize(epochModel.epochMatrix.getRowGroupCount());
cachedData.xLinEq.resize(this->objectives.size());
for (auto& x_o : cachedData.xLinEq) {
x_o.assign(epochModel.epochMatrix.getRowGroupCount(), storm::utility::zero<ValueType>());
}
swDataUpdate.stop();
}
}
template <class SparseMdpModelType>
std::vector<typename SparseMdpRewardBoundedPcaaWeightVectorChecker<SparseMdpModelType>::ValueType> SparseMdpRewardBoundedPcaaWeightVectorChecker<SparseMdpModelType>::getUnderApproximationOfInitialStateResults() const {
STORM_LOG_THROW(underApproxResult, storm::exceptions::InvalidOperationException, "Tried to retrieve results but check(..) has not been called before.");
return underApproxResult.get();
}
template <class SparseMdpModelType>
std::vector<typename SparseMdpRewardBoundedPcaaWeightVectorChecker<SparseMdpModelType>::ValueType> SparseMdpRewardBoundedPcaaWeightVectorChecker<SparseMdpModelType>::getOverApproximationOfInitialStateResults() const {
STORM_LOG_THROW(overApproxResult, storm::exceptions::InvalidOperationException, "Tried to retrieve results but check(..) has not been called before.");
return overApproxResult.get();
}
template class SparseMdpRewardBoundedPcaaWeightVectorChecker<storm::models::sparse::Mdp<double>>;
#ifdef STORM_HAVE_CARL
template class SparseMdpRewardBoundedPcaaWeightVectorChecker<storm::models::sparse::Mdp<storm::RationalNumber>>;
#endif
}
}
}