You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

424 lines
34 KiB

#include "storm/modelchecker/multiobjective/preprocessing/SparseMultiObjectivePreprocessor.h"
#include <algorithm>
#include <set>
#include "storm/models/sparse/Mdp.h"
#include "storm/models/sparse/MarkovAutomaton.h"
#include "storm/models/sparse/StandardRewardModel.h"
#include "storm/modelchecker/multiobjective/preprocessing/SparseMultiObjectiveMemoryIncorporation.h"
#include "storm/modelchecker/propositional/SparsePropositionalModelChecker.h"
#include "storm/modelchecker/prctl/helper/BaierUpperRewardBoundsComputer.h"
#include "storm/modelchecker/results/ExplicitQualitativeCheckResult.h"
#include "storm/storage/MaximalEndComponentDecomposition.h"
#include "storm/storage/expressions/ExpressionManager.h"
#include "storm/transformer/EndComponentEliminator.h"
#include "storm/utility/macros.h"
#include "storm/utility/vector.h"
#include "storm/utility/graph.h"
#include "storm/settings/SettingsManager.h"
#include "storm/settings/modules/GeneralSettings.h"
#include "storm/exceptions/InvalidPropertyException.h"
#include "storm/exceptions/UnexpectedException.h"
#include "storm/exceptions/NotImplementedException.h"
namespace storm {
namespace modelchecker {
namespace multiobjective {
namespace preprocessing {
template<typename SparseModelType>
typename SparseMultiObjectivePreprocessor<SparseModelType>::ReturnType SparseMultiObjectivePreprocessor<SparseModelType>::preprocess(SparseModelType const& originalModel, storm::logic::MultiObjectiveFormula const& originalFormula) {
auto model = SparseMultiObjectiveMemoryIncorporation<SparseModelType>::incorporateGoalMemory(originalModel, originalFormula);
PreprocessorData data(model);
//Invoke preprocessing on the individual objectives
for (auto const& subFormula : originalFormula.getSubformulas()) {
STORM_LOG_INFO("Preprocessing objective " << *subFormula<< ".");
data.objectives.push_back(std::make_shared<Objective<ValueType>>());
data.objectives.back()->originalFormula = subFormula;
data.finiteRewardCheckObjectives.resize(data.objectives.size(), false);
data.upperResultBoundObjectives.resize(data.objectives.size(), false);
if (data.objectives.back()->originalFormula->isOperatorFormula()) {
preprocessOperatorFormula(data.objectives.back()->originalFormula->asOperatorFormula(), data);
} else {
STORM_LOG_THROW(false, storm::exceptions::InvalidPropertyException, "Could not preprocess the subformula " << *subFormula << " of " << originalFormula << " because it is not supported");
}
}
// Remove reward models that are not needed anymore
std::set<std::string> relevantRewardModels;
for (auto const& obj : data.objectives) {
obj->formula->gatherReferencedRewardModels(relevantRewardModels);
}
data.model->restrictRewardModels(relevantRewardModels);
// Build the actual result
return buildResult(originalModel, originalFormula, data);
}
template <typename SparseModelType>
SparseMultiObjectivePreprocessor<SparseModelType>::PreprocessorData::PreprocessorData(std::shared_ptr<SparseModelType> model) : model(model) {
// The rewardModelNamePrefix should not be a prefix of a reward model name of the given model to ensure uniqueness of new reward model names
rewardModelNamePrefix = "obj";
while (true) {
bool prefixIsUnique = true;
for (auto const& rewardModels : model->getRewardModels()) {
if (rewardModelNamePrefix.size() <= rewardModels.first.size()) {
if (std::mismatch(rewardModelNamePrefix.begin(), rewardModelNamePrefix.end(), rewardModels.first.begin()).first == rewardModelNamePrefix.end()) {
prefixIsUnique = false;
rewardModelNamePrefix = "_" + rewardModelNamePrefix;
break;
}
}
}
if (prefixIsUnique) {
break;
}
}
}
storm::logic::OperatorInformation getOperatorInformation(storm::logic::OperatorFormula const& formula, bool considerComplementaryEvent) {
storm::logic::OperatorInformation opInfo;
if (formula.hasBound()) {
opInfo.bound = formula.getBound();
// Invert the bound (if necessary)
if (considerComplementaryEvent) {
opInfo.bound->threshold = opInfo.bound->threshold.getManager().rational(storm::utility::one<storm::RationalNumber>()) - opInfo.bound->threshold;
switch (opInfo.bound->comparisonType) {
case storm::logic::ComparisonType::Greater:
opInfo.bound->comparisonType = storm::logic::ComparisonType::Less;
break;
case storm::logic::ComparisonType::GreaterEqual:
opInfo.bound->comparisonType = storm::logic::ComparisonType::LessEqual;
break;
case storm::logic::ComparisonType::Less:
opInfo.bound->comparisonType = storm::logic::ComparisonType::Greater;
break;
case storm::logic::ComparisonType::LessEqual:
opInfo.bound->comparisonType = storm::logic::ComparisonType::GreaterEqual;
break;
default:
STORM_LOG_THROW(false, storm::exceptions::InvalidPropertyException, "Current objective " << formula << " has unexpected comparison type");
}
}
if (storm::logic::isLowerBound(opInfo.bound->comparisonType)) {
opInfo.optimalityType = storm::solver::OptimizationDirection::Maximize;
} else {
opInfo.optimalityType = storm::solver::OptimizationDirection::Minimize;
}
STORM_LOG_WARN_COND(!formula.hasOptimalityType(), "Optimization direction of formula " << formula << " ignored as the formula also specifies a threshold.");
} else if (formula.hasOptimalityType()){
opInfo.optimalityType = formula.getOptimalityType();
// Invert the optimality type (if necessary)
if (considerComplementaryEvent) {
opInfo.optimalityType = storm::solver::invert(opInfo.optimalityType.get());
}
} else {
STORM_LOG_THROW(false, storm::exceptions::InvalidPropertyException, "Objective " << formula << " does not specify whether to minimize or maximize");
}
return opInfo;
}
template<typename SparseModelType>
void SparseMultiObjectivePreprocessor<SparseModelType>::preprocessOperatorFormula(storm::logic::OperatorFormula const& formula, PreprocessorData& data) {
Objective<ValueType>& objective = *data.objectives.back();
// Check whether the complementary event is considered
objective.considersComplementaryEvent = formula.isProbabilityOperatorFormula() && formula.getSubformula().isGloballyFormula();
// Extract the operator information from the formula and potentially invert it for the complementary event
storm::logic::OperatorInformation opInfo = getOperatorInformation(formula, objective.considersComplementaryEvent);
if (formula.isProbabilityOperatorFormula()){
preprocessProbabilityOperatorFormula(formula.asProbabilityOperatorFormula(), opInfo, data);
} else if (formula.isRewardOperatorFormula()){
preprocessRewardOperatorFormula(formula.asRewardOperatorFormula(), opInfo, data);
} else if (formula.isTimeOperatorFormula()){
preprocessTimeOperatorFormula(formula.asTimeOperatorFormula(), opInfo, data);
} else {
STORM_LOG_THROW(false, storm::exceptions::InvalidPropertyException, "Could not preprocess the objective " << formula << " because it is not supported");
}
}
template<typename SparseModelType>
void SparseMultiObjectivePreprocessor<SparseModelType>::preprocessProbabilityOperatorFormula(storm::logic::ProbabilityOperatorFormula const& formula, storm::logic::OperatorInformation const& opInfo, PreprocessorData& data) {
// Probabilities are between zero and one
data.objectives.back()->lowerResultBound = storm::utility::zero<ValueType>();
data.objectives.back()->upperResultBound = storm::utility::one<ValueType>();
if (formula.getSubformula().isUntilFormula()){
preprocessUntilFormula(formula.getSubformula().asUntilFormula(), opInfo, data);
} else if (formula.getSubformula().isBoundedUntilFormula()){
preprocessBoundedUntilFormula(formula.getSubformula().asBoundedUntilFormula(), opInfo, data);
} else if (formula.getSubformula().isGloballyFormula()){
preprocessGloballyFormula(formula.getSubformula().asGloballyFormula(), opInfo, data);
} else if (formula.getSubformula().isEventuallyFormula()){
preprocessEventuallyFormula(formula.getSubformula().asEventuallyFormula(), opInfo, data);
} else {
STORM_LOG_THROW(false, storm::exceptions::InvalidPropertyException, "The subformula of " << formula << " is not supported.");
}
}
template<typename SparseModelType>
void SparseMultiObjectivePreprocessor<SparseModelType>::preprocessRewardOperatorFormula(storm::logic::RewardOperatorFormula const& formula, storm::logic::OperatorInformation const& opInfo, PreprocessorData& data) {
STORM_LOG_THROW((formula.hasRewardModelName() && data.model->hasRewardModel(formula.getRewardModelName()))
|| (!formula.hasRewardModelName() && data.model->hasUniqueRewardModel()), storm::exceptions::InvalidPropertyException, "The reward model is not unique or the formula " << formula << " does not specify an existing reward model.");
std::string rewardModelName;
if (formula.hasRewardModelName()) {
rewardModelName = formula.getRewardModelName();
STORM_LOG_THROW(data.model->hasRewardModel(rewardModelName), storm::exceptions::InvalidPropertyException, "The reward model specified by formula " << formula << " does not exist in the model");
} else {
STORM_LOG_THROW(data.model->hasUniqueRewardModel(), storm::exceptions::InvalidOperationException, "The formula " << formula << " does not specify a reward model name and the reward model is not unique.");
rewardModelName = data.model->getRewardModels().begin()->first;
}
data.objectives.back()->lowerResultBound = storm::utility::zero<ValueType>();
if (formula.getSubformula().isEventuallyFormula()){
preprocessEventuallyFormula(formula.getSubformula().asEventuallyFormula(), opInfo, data, rewardModelName);
} else if (formula.getSubformula().isCumulativeRewardFormula()) {
preprocessCumulativeRewardFormula(formula.getSubformula().asCumulativeRewardFormula(), opInfo, data, rewardModelName);
} else if (formula.getSubformula().isTotalRewardFormula()) {
preprocessTotalRewardFormula(opInfo, data, rewardModelName);
} else {
STORM_LOG_THROW(false, storm::exceptions::InvalidPropertyException, "The subformula of " << formula << " is not supported.");
}
}
template<typename SparseModelType>
void SparseMultiObjectivePreprocessor<SparseModelType>::preprocessTimeOperatorFormula(storm::logic::TimeOperatorFormula const& formula, storm::logic::OperatorInformation const& opInfo, PreprocessorData& data) {
// Time formulas are only supported for Markov automata
STORM_LOG_THROW(data.model->isOfType(storm::models::ModelType::MarkovAutomaton), storm::exceptions::InvalidPropertyException, "Time operator formulas are only supported for Markov automata.");
data.objectives.back()->lowerResultBound = storm::utility::zero<ValueType>();
if (formula.getSubformula().isEventuallyFormula()){
preprocessEventuallyFormula(formula.getSubformula().asEventuallyFormula(), opInfo, data);
} else {
STORM_LOG_THROW(false, storm::exceptions::InvalidPropertyException, "The subformula of " << formula << " is not supported.");
}
}
template<typename SparseModelType>
void SparseMultiObjectivePreprocessor<SparseModelType>::preprocessUntilFormula(storm::logic::UntilFormula const& formula, storm::logic::OperatorInformation const& opInfo, PreprocessorData& data, std::shared_ptr<storm::logic::Formula const> subformula) {
// Try to transform the formula to expected total (or cumulative) rewards
storm::modelchecker::SparsePropositionalModelChecker<SparseModelType> mc(*data.model);
storm::storage::BitVector rightSubformulaResult = mc.check(formula.getRightSubformula())->asExplicitQualitativeCheckResult().getTruthValuesVector();
// Check if the formula is already satisfied in the initial state because then the transformation to expected rewards will fail.
// TODO: Handle this case more properly
STORM_LOG_THROW((data.model->getInitialStates() & rightSubformulaResult).empty(), storm::exceptions::NotImplementedException, "The Probability for the objective " << *data.objectives.back()->originalFormula << " is always one as the rhs of the until formula is true in the initial state. This (trivial) case is currently not implemented.");
// Whenever a state that violates the left subformula or satisfies the right subformula is reached, the objective is 'decided', i.e., no more reward should be collected from there
storm::storage::BitVector notLeftOrRight = mc.check(formula.getLeftSubformula())->asExplicitQualitativeCheckResult().getTruthValuesVector();
notLeftOrRight.complement();
notLeftOrRight |=rightSubformulaResult;
// Get the states that are reachable from a notLeftOrRight state
storm::storage::BitVector allStates(data.model->getNumberOfStates(), true), noStates(data.model->getNumberOfStates(), false);
storm::storage::BitVector reachableFromGoal = storm::utility::graph::getReachableStates(data.model->getTransitionMatrix(), notLeftOrRight, allStates, noStates);
// Get the states that are reachable from an initial state, stopping at the states reachable from goal
storm::storage::BitVector reachableFromInit = storm::utility::graph::getReachableStates(data.model->getTransitionMatrix(), data.model->getInitialStates(), ~notLeftOrRight, reachableFromGoal);
// Exclude the actual notLeftOrRight states from the states that are reachable from init
reachableFromInit &= ~notLeftOrRight;
// If we can reach a state that is reachable from goal, but which is not a goal state, it means that the transformation to expected rewards is not possible.
if ((reachableFromInit & reachableFromGoal).empty()) {
STORM_LOG_INFO("Objective " << data.objectives.back()->originalFormula << " is transformed to an expected total/cumulative reward property.");
// Transform to expected total rewards:
// build stateAction reward vector that gives (one*transitionProbability) reward whenever a transition leads from a reachableFromInit state to a goalState
std::vector<typename SparseModelType::ValueType> objectiveRewards(data.model->getTransitionMatrix().getRowCount(), storm::utility::zero<typename SparseModelType::ValueType>());
for (auto const& state : reachableFromInit) {
for (uint_fast64_t row = data.model->getTransitionMatrix().getRowGroupIndices()[state]; row < data.model->getTransitionMatrix().getRowGroupIndices()[state + 1]; ++row) {
objectiveRewards[row] = data.model->getTransitionMatrix().getConstrainedRowSum(row, rightSubformulaResult);
}
}
std::string rewardModelName = data.rewardModelNamePrefix + std::to_string(data.objectives.size());
data.model->addRewardModel(rewardModelName, typename SparseModelType::RewardModelType(boost::none, std::move(objectiveRewards)));
if (subformula == nullptr) {
subformula = std::make_shared<storm::logic::TotalRewardFormula>();
}
data.objectives.back()->formula = std::make_shared<storm::logic::RewardOperatorFormula>(subformula, rewardModelName, opInfo);
} else {
STORM_LOG_INFO("Objective " << data.objectives.back()->originalFormula << " can not be transformed to an expected total/cumulative reward property.");
data.objectives.back()->formula = std::make_shared<storm::logic::ProbabilityOperatorFormula>(formula.asSharedPointer(), opInfo);
}
}
template<typename SparseModelType>
void SparseMultiObjectivePreprocessor<SparseModelType>::preprocessBoundedUntilFormula(storm::logic::BoundedUntilFormula const& formula, storm::logic::OperatorInformation const& opInfo, PreprocessorData& data) {
// Check how to handle this query
if (formula.isMultiDimensional() || formula.getTimeBoundReference().isRewardBound()) {
STORM_LOG_INFO("Objective " << data.objectives.back()->originalFormula << " is not transformed to an expected cumulative reward property.");
data.objectives.back()->formula = std::make_shared<storm::logic::ProbabilityOperatorFormula>(formula.asSharedPointer(), opInfo);
} else if (!formula.hasLowerBound() || (!formula.isLowerBoundStrict() && storm::utility::isZero(formula.template getLowerBound<storm::RationalNumber>()))) {
std::shared_ptr<storm::logic::Formula const> subformula;
if (!formula.hasUpperBound()) {
// The formula is actually unbounded
subformula = std::make_shared<storm::logic::TotalRewardFormula>();
} else {
STORM_LOG_THROW(!data.model->isOfType(storm::models::ModelType::MarkovAutomaton) || formula.getTimeBoundReference().isTimeBound(), storm::exceptions::InvalidPropertyException, "Bounded until formulas for Markov Automata are only allowed when time bounds are considered.");
storm::logic::TimeBound bound(formula.isUpperBoundStrict(), formula.getUpperBound());
subformula = std::make_shared<storm::logic::CumulativeRewardFormula>(bound, formula.getTimeBoundReference());
}
preprocessUntilFormula(storm::logic::UntilFormula(formula.getLeftSubformula().asSharedPointer(), formula.getRightSubformula().asSharedPointer()), opInfo, data, subformula);
} else {
STORM_LOG_THROW(false, storm::exceptions::InvalidPropertyException, "Property " << formula << "is not supported");
}
}
template<typename SparseModelType>
void SparseMultiObjectivePreprocessor<SparseModelType>::preprocessGloballyFormula(storm::logic::GloballyFormula const& formula, storm::logic::OperatorInformation const& opInfo, PreprocessorData& data) {
// The formula is transformed to an until formula for the complementary event.
auto negatedSubformula = std::make_shared<storm::logic::UnaryBooleanStateFormula>(storm::logic::UnaryBooleanStateFormula::OperatorType::Not, formula.getSubformula().asSharedPointer());
preprocessUntilFormula(storm::logic::UntilFormula(storm::logic::Formula::getTrueFormula(), negatedSubformula), opInfo, data);
}
template<typename SparseModelType>
void SparseMultiObjectivePreprocessor<SparseModelType>::preprocessEventuallyFormula(storm::logic::EventuallyFormula const& formula, storm::logic::OperatorInformation const& opInfo, PreprocessorData& data, boost::optional<std::string> const& optionalRewardModelName) {
if (formula.isReachabilityProbabilityFormula()){
preprocessUntilFormula(storm::logic::UntilFormula(storm::logic::Formula::getTrueFormula(), formula.getSubformula().asSharedPointer()), opInfo, data);
return;
}
// Analyze the subformula
storm::modelchecker::SparsePropositionalModelChecker<SparseModelType> mc(*data.model);
storm::storage::BitVector subFormulaResult = mc.check(formula.getSubformula())->asExplicitQualitativeCheckResult().getTruthValuesVector();
// Get the states that are reachable from a goal state
storm::storage::BitVector allStates(data.model->getNumberOfStates(), true), noStates(data.model->getNumberOfStates(), false);
storm::storage::BitVector reachableFromGoal = storm::utility::graph::getReachableStates(data.model->getTransitionMatrix(), subFormulaResult, allStates, noStates);
// Get the states that are reachable from an initial state, stopping at the states reachable from goal
storm::storage::BitVector reachableFromInit = storm::utility::graph::getReachableStates(data.model->getTransitionMatrix(), data.model->getInitialStates(), allStates, reachableFromGoal);
// Exclude the actual goal states from the states that are reachable from an initial state
reachableFromInit &= ~subFormulaResult;
// If we can reach a state that is reachable from goal but which is not a goal state, it means that the transformation to expected total rewards is not possible.
if ((reachableFromInit & reachableFromGoal).empty()) {
STORM_LOG_INFO("Objective " << data.objectives.back()->originalFormula << " is transformed to an expected total reward property.");
// Transform to expected total rewards:
std::string rewardModelName = data.rewardModelNamePrefix + std::to_string(data.objectives.size());
auto totalRewardFormula = std::make_shared<storm::logic::TotalRewardFormula>();
data.objectives.back()->formula = std::make_shared<storm::logic::RewardOperatorFormula>(totalRewardFormula, rewardModelName, opInfo);
if (formula.isReachabilityRewardFormula()) {
// build stateAction reward vector that only gives reward for states that are reachable from init
assert(optionalRewardModelName.is_initialized());
typename SparseModelType::RewardModelType objectiveRewards = data.model->getRewardModel(optionalRewardModelName.get());
objectiveRewards.reduceToStateBasedRewards(data.model->getTransitionMatrix(), false);
if (objectiveRewards.hasStateRewards()) {
storm::utility::vector::setVectorValues(objectiveRewards.getStateRewardVector(), reachableFromGoal, storm::utility::zero<typename SparseModelType::ValueType>());
}
if (objectiveRewards.hasStateActionRewards()) {
for (auto state : reachableFromGoal) {
std::fill_n(objectiveRewards.getStateActionRewardVector().begin() + data.model->getTransitionMatrix().getRowGroupIndices()[state], data.model->getTransitionMatrix().getRowGroupSize(state), storm::utility::zero<typename SparseModelType::ValueType>());
}
}
data.model->addRewardModel(rewardModelName, std::move(objectiveRewards));
} else if (formula.isReachabilityTimeFormula() && data.model->isOfType(storm::models::ModelType::MarkovAutomaton)) {
// build stateAction reward vector that only gives reward for relevant states
std::vector<typename SparseModelType::ValueType> timeRewards(data.model->getNumberOfStates(), storm::utility::zero<typename SparseModelType::ValueType>());
storm::utility::vector::setVectorValues(timeRewards, dynamic_cast<storm::models::sparse::MarkovAutomaton<typename SparseModelType::ValueType> const&>(*data.model).getMarkovianStates() & reachableFromInit, storm::utility::one<typename SparseModelType::ValueType>());
data.model->addRewardModel(rewardModelName, typename SparseModelType::RewardModelType(std::move(timeRewards)));
} else {
STORM_LOG_THROW(false, storm::exceptions::InvalidPropertyException, "The formula " << formula << " neither considers reachability probabilities nor reachability rewards " << (data.model->isOfType(storm::models::ModelType::MarkovAutomaton) ? "nor reachability time" : "") << ". This is not supported.");
}
} else {
STORM_LOG_INFO("Objective " << data.objectives.back()->originalFormula << " can not be transformed to an expected total/cumulative reward property.");
if (formula.isReachabilityRewardFormula()) {
assert(optionalRewardModelName.is_initialized());
data.objectives.back()->formula = std::make_shared<storm::logic::RewardOperatorFormula>(formula.asSharedPointer(), optionalRewardModelName.get(), opInfo);
} else if (formula.isReachabilityTimeFormula() && data.model->isOfType(storm::models::ModelType::MarkovAutomaton)) {
data.objectives.back()->formula = std::make_shared<storm::logic::TimeOperatorFormula>(formula.asSharedPointer(), opInfo);
} else {
STORM_LOG_THROW(false, storm::exceptions::InvalidPropertyException, "The formula " << formula << " neither considers reachability probabilities nor reachability rewards " << (data.model->isOfType(storm::models::ModelType::MarkovAutomaton) ? "nor reachability time" : "") << ". This is not supported.");
}
}
data.finiteRewardCheckObjectives.set(data.objectives.size() - 1, true);
}
template<typename SparseModelType>
void SparseMultiObjectivePreprocessor<SparseModelType>::preprocessCumulativeRewardFormula(storm::logic::CumulativeRewardFormula const& formula, storm::logic::OperatorInformation const& opInfo, PreprocessorData& data, boost::optional<std::string> const& optionalRewardModelName) {
STORM_LOG_THROW(data.model->isOfType(storm::models::ModelType::Mdp), storm::exceptions::InvalidPropertyException, "Cumulative reward formulas are not supported for the given model type.");
auto cumulativeRewardFormula = std::make_shared<storm::logic::CumulativeRewardFormula>(formula);
data.objectives.back()->formula = std::make_shared<storm::logic::RewardOperatorFormula>(cumulativeRewardFormula, *optionalRewardModelName, opInfo);
bool onlyRewardBounds = true;
for (uint64_t i = 0; i < cumulativeRewardFormula->getDimension(); ++i) {
if (!cumulativeRewardFormula->getTimeBoundReference(i).isRewardBound()) {
onlyRewardBounds = false;
break;
}
}
if (onlyRewardBounds) {
data.finiteRewardCheckObjectives.set(data.objectives.size() - 1, true);
}
}
template<typename SparseModelType>
void SparseMultiObjectivePreprocessor<SparseModelType>::preprocessTotalRewardFormula(storm::logic::OperatorInformation const& opInfo, PreprocessorData& data, boost::optional<std::string> const& optionalRewardModelName) {
auto totalRewardFormula = std::make_shared<storm::logic::TotalRewardFormula>();
data.objectives.back()->formula = std::make_shared<storm::logic::RewardOperatorFormula>(totalRewardFormula, *optionalRewardModelName, opInfo);
data.finiteRewardCheckObjectives.set(data.objectives.size() - 1, true);
}
template<typename SparseModelType>
typename SparseMultiObjectivePreprocessor<SparseModelType>::ReturnType SparseMultiObjectivePreprocessor<SparseModelType>::buildResult(SparseModelType const& originalModel, storm::logic::MultiObjectiveFormula const& originalFormula, PreprocessorData& data) {
ReturnType result(originalFormula, originalModel);
auto backwardTransitions = data.model->getBackwardTransitions();
result.preprocessedModel = data.model;
for (auto& obj : data.objectives) {
result.objectives.push_back(std::move(*obj));
}
result.queryType = getQueryType(result.objectives);
result.maybeInfiniteRewardObjectives = std::move(data.finiteRewardCheckObjectives);
return result;
}
template<typename SparseModelType>
typename SparseMultiObjectivePreprocessor<SparseModelType>::ReturnType::QueryType SparseMultiObjectivePreprocessor<SparseModelType>::getQueryType(std::vector<Objective<ValueType>> const& objectives) {
uint_fast64_t numOfObjectivesWithThreshold = 0;
for (auto& obj : objectives) {
if (obj.formula->hasBound()) {
++numOfObjectivesWithThreshold;
}
}
if (numOfObjectivesWithThreshold == objectives.size()) {
return ReturnType::QueryType::Achievability;
} else if (numOfObjectivesWithThreshold + 1 == objectives.size()) {
// Note: We do not want to consider a Pareto query when the total number of objectives is one.
return ReturnType::QueryType::Quantitative;
} else if (numOfObjectivesWithThreshold == 0) {
return ReturnType::QueryType::Pareto;
} else {
STORM_LOG_THROW(false, storm::exceptions::InvalidPropertyException, "Invalid Multi-objective query: The numer of qualitative objectives should be either 0 (Pareto query), 1 (quantitative query), or #objectives (achievability query).");
}
}
template class SparseMultiObjectivePreprocessor<storm::models::sparse::Mdp<double>>;
template class SparseMultiObjectivePreprocessor<storm::models::sparse::MarkovAutomaton<double>>;
template class SparseMultiObjectivePreprocessor<storm::models::sparse::Mdp<storm::RationalNumber>>;
template class SparseMultiObjectivePreprocessor<storm::models::sparse::MarkovAutomaton<storm::RationalNumber>>;
}
}
}
}