323 lines
24 KiB

#include <utility/graph.h>
#include <environment/solver/GameSolverEnvironment.h>
#include "SparseSmgRpatlHelper.h"
#include "storm/environment/Environment.h"
#include "storm/environment/solver/MultiplierEnvironment.h"
#include "storm/environment/solver/MinMaxSolverEnvironment.h"
#include "storm/solver/MinMaxLinearEquationSolver.h"
#include "storm/utility/vector.h"
#include "storm/utility/graph.h"
#include "storm/modelchecker/rpatl/helper/internal/GameViHelper.h"
#include "storm/modelchecker/rpatl/helper/internal/SoundGameViHelper.h"
namespace storm {
namespace modelchecker {
namespace helper {
template<typename ValueType>
SMGSparseModelCheckingHelperReturnType<ValueType> SparseSmgRpatlHelper<ValueType>::computeUntilProbabilities(Environment const& env, storm::solver::SolveGoal<ValueType>&& goal, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates, bool qualitative, storm::storage::BitVector statesOfCoalition, bool produceScheduler, ModelCheckerHint const& hint) {
auto solverEnv = env;
solverEnv.solver().minMax().setMethod(storm::solver::MinMaxMethod::ValueIteration, false);
// Relevant states are those states which are phiStates and not PsiStates.
storm::storage::BitVector relevantStates = phiStates & ~psiStates;
// Initialize the x vector and solution vector result.
std::vector<ValueType> x = std::vector<ValueType>(relevantStates.getNumberOfSetBits(), storm::utility::zero<ValueType>());
std::vector<ValueType> result = std::vector<ValueType>(transitionMatrix.getRowGroupCount(), storm::utility::zero<ValueType>());
std::vector<ValueType> b = transitionMatrix.getConstrainedRowGroupSumVector(relevantStates, psiStates);
std::vector<ValueType> constrainedChoiceValues = std::vector<ValueType>(b.size(), storm::utility::zero<ValueType>());
std::unique_ptr<storm::storage::Scheduler<ValueType>> scheduler;
storm::storage::BitVector clippedStatesOfCoalition(relevantStates.getNumberOfSetBits());
clippedStatesOfCoalition.setClippedStatesOfCoalition(relevantStates, statesOfCoalition);
if(!relevantStates.empty()) {
// Reduce the matrix to relevant states.
storm::storage::SparseMatrix<ValueType> submatrix = transitionMatrix.getSubmatrix(true, relevantStates, relevantStates, false);
// Create GameViHelper for computations.
storm::modelchecker::helper::internal::GameViHelper<ValueType> viHelper(submatrix, clippedStatesOfCoalition);
if (produceScheduler) {
viHelper.setProduceScheduler(true);
}
viHelper.performValueIteration(env, x, b, goal.direction(), constrainedChoiceValues);
if(goal.isShieldingTask()) {
viHelper.getChoiceValues(env, x, constrainedChoiceValues);
}
// Fill up the constrainedChoice Values to full size.
viHelper.fillChoiceValuesVector(constrainedChoiceValues, relevantStates, transitionMatrix.getRowGroupIndices());
if (produceScheduler) {
scheduler = std::make_unique<storm::storage::Scheduler<ValueType>>(expandScheduler(viHelper.extractScheduler(), psiStates, ~phiStates));
}
}
// Fill up the result vector with the values of x for the relevant states, with 1s for psi states (0 is default)
storm::utility::vector::setVectorValues(result, relevantStates, x);
storm::utility::vector::setVectorValues(result, psiStates, storm::utility::one<ValueType>());
return SMGSparseModelCheckingHelperReturnType<ValueType>(std::move(result), std::move(relevantStates), std::move(scheduler), std::move(constrainedChoiceValues));
}
template<typename ValueType>
SMGSparseModelCheckingHelperReturnType<ValueType> SparseSmgRpatlHelper<ValueType>::computeUntilProbabilitiesSound(Environment const& env, storm::solver::SolveGoal<ValueType>&& goal, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates, bool qualitative, storm::storage::BitVector statesOfCoalition, bool produceScheduler, ModelCheckerHint const& hint) {
storm::storage::BitVector probGreater0 = storm::utility::graph::performProbGreater0(backwardTransitions, phiStates, psiStates);
std::unique_ptr<storm::storage::Scheduler<ValueType>> scheduler;
storm::storage::BitVector relevantStates = phiStates;
// Initialize the x vector and solution vector result.
std::vector<ValueType> xL = std::vector<ValueType>(transitionMatrix.getRowGroupCount(), storm::utility::zero<ValueType>());
// assigning 1s to the xL vector for all Goal states
auto xL_begin = xL.begin();
std::for_each(xL.begin(), xL.end(), [&psiStates, &xL_begin](ValueType &it)
{
if (psiStates[&it - &(*xL_begin)])
it = 1;
});
size_t i = 0;
auto new_end = std::remove_if(xL.begin(), xL.end(), [&relevantStates, &i](const auto& item) {
bool ret = !(relevantStates[i]);
i++;
return ret;
});
xL.erase(new_end, xL.end());
xL.resize(relevantStates.getNumberOfSetBits());
std::vector<ValueType> xU = std::vector<ValueType>(transitionMatrix.getRowGroupCount(), storm::utility::zero<ValueType>());
// assigning 1s to the xU vector for all states except the states s where Prob(sEf) = 0 for all goal states f
auto xU_begin = xU.begin();
std::for_each(xU.begin(), xU.end(), [&probGreater0, &xU_begin](ValueType &it)
{
if (probGreater0[&it - &(*xU_begin)])
it = 1;
});
i = 0;
auto new_end_U = std::remove_if(xU.begin(), xU.end(), [&relevantStates, &i](const auto& item) {
bool ret = !(relevantStates[i]);
i++;
return ret;
});
xU.erase(new_end_U, xU.end());
xU.resize(relevantStates.getNumberOfSetBits());
storm::storage::BitVector clippedPsiStates(relevantStates.getNumberOfSetBits());
clippedPsiStates.setClippedStatesOfCoalition(relevantStates, psiStates);
std::vector<ValueType> b = transitionMatrix.getConstrainedRowGroupSumVector(relevantStates, psiStates);
std::vector<ValueType> result = std::vector<ValueType>(transitionMatrix.getRowGroupCount(), storm::utility::zero<ValueType>());
storm::storage::BitVector clippedStatesOfCoalition(relevantStates.getNumberOfSetBits());
clippedStatesOfCoalition.setClippedStatesOfCoalition(relevantStates, statesOfCoalition);
std::vector<ValueType> constrainedChoiceValues = std::vector<ValueType>(b.size(), storm::utility::zero<ValueType>());
if (!relevantStates.empty()) {
storm::storage::SparseMatrix<ValueType> submatrix = transitionMatrix.getSubmatrix(true, relevantStates, relevantStates, false);
storm::modelchecker::helper::internal::SoundGameViHelper<ValueType> viHelper(submatrix, submatrix.transpose(), b, clippedStatesOfCoalition,
clippedPsiStates, goal.direction());
if (produceScheduler) {
viHelper.setProduceScheduler(true);
}
viHelper.performValueIteration(env, xL, xU, goal.direction(), constrainedChoiceValues);
viHelper.fillChoiceValuesVector(constrainedChoiceValues, relevantStates, transitionMatrix.getRowGroupIndices());
storm::utility::vector::setVectorValues(result, relevantStates, xL);
if (produceScheduler) {
scheduler =
std::make_unique<storm::storage::Scheduler<ValueType>>(expandScheduler(viHelper.extractScheduler(), psiStates, ~phiStates, true));
}
}
return SMGSparseModelCheckingHelperReturnType<ValueType>(std::move(result), std::move(relevantStates), std::move(scheduler), std::move(constrainedChoiceValues));
}
template<typename ValueType>
storm::storage::Scheduler<ValueType> SparseSmgRpatlHelper<ValueType>::expandScheduler(storm::storage::Scheduler<ValueType> scheduler, storm::storage::BitVector psiStates, storm::storage::BitVector notPhiStates, bool sound) {
storm::storage::Scheduler<ValueType> completeScheduler(psiStates.size());
uint_fast64_t maybeStatesCounter = 0;
uint schedulerSize = psiStates.size();
for(uint stateCounter = 0; stateCounter < schedulerSize; stateCounter++) {
// psiStates already fulfill formulae so we can set an arbitrary action
if(psiStates.get(stateCounter)) {
completeScheduler.setChoice(0, stateCounter);
if (sound) {
maybeStatesCounter++;
}
// ~phiStates do not fulfill formulae so we can set an arbitrary action
} else if(notPhiStates.get(stateCounter)) {
completeScheduler.setChoice(0, stateCounter);
} else {
completeScheduler.setChoice(scheduler.getChoice(maybeStatesCounter), stateCounter);
maybeStatesCounter++;
}
}
return completeScheduler;
}
template<typename ValueType>
SMGSparseModelCheckingHelperReturnType<ValueType> SparseSmgRpatlHelper<ValueType>::computeGloballyProbabilities(Environment const& env, storm::solver::SolveGoal<ValueType>&& goal, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, storm::storage::BitVector const& psiStates, bool qualitative, storm::storage::BitVector statesOfCoalition, bool produceScheduler, ModelCheckerHint const& hint) {
// G psi = not(F(not psi)) = not(true U (not psi))
// The psiStates are flipped, then the true U part is calculated, at the end the result is flipped again.
storm::storage::BitVector notPsiStates = ~psiStates;
statesOfCoalition.complement();
if (env.solver().isForceSoundness()) {
auto result = computeUntilProbabilitiesSound(env, std::move(goal), transitionMatrix, backwardTransitions,
storm::storage::BitVector(transitionMatrix.getRowGroupCount(), true), notPsiStates,
qualitative, statesOfCoalition, produceScheduler, hint);
for (auto& element : result.values) {
element = storm::utility::one<ValueType>() - element;
}
for (auto& element : result.choiceValues) {
element = storm::utility::one<ValueType>() - element;
}
return result;
}
auto result = computeUntilProbabilities(env, std::move(goal), transitionMatrix, backwardTransitions,
storm::storage::BitVector(transitionMatrix.getRowGroupCount(), true), notPsiStates,
qualitative, statesOfCoalition, produceScheduler, hint);
for (auto& element : result.values) {
element = storm::utility::one<ValueType>() - element;
}
for (auto& element : result.choiceValues) {
element = storm::utility::one<ValueType>() - element;
}
return result;
}
template<typename ValueType>
SMGSparseModelCheckingHelperReturnType<ValueType> SparseSmgRpatlHelper<ValueType>::computeNextProbabilities(Environment const& env, storm::solver::SolveGoal<ValueType>&& goal, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, storm::storage::BitVector const& psiStates, bool qualitative, storm::storage::BitVector statesOfCoalition, bool produceScheduler, ModelCheckerHint const& hint) {
// Create vector result, bitvector allStates with a true for each state and a vector b for the probability for each state to get to a psi state, choiceValues is to store choices for shielding.
std::vector<ValueType> result = std::vector<ValueType>(transitionMatrix.getRowGroupCount(), storm::utility::zero<ValueType>());
storm::storage::BitVector allStates = storm::storage::BitVector(transitionMatrix.getRowGroupCount(), true);
std::vector<ValueType> b = transitionMatrix.getConstrainedRowGroupSumVector(allStates, psiStates);
std::vector<ValueType> choiceValues = std::vector<ValueType>(transitionMatrix.getRowCount(), storm::utility::zero<ValueType>());
statesOfCoalition.complement();
if (produceScheduler) {
STORM_LOG_WARN("Next formula does not expect that produceScheduler is set to true.");
}
// Create a multiplier for reduction.
auto multiplier = storm::solver::MultiplierFactory<ValueType>().create(env, transitionMatrix);
auto rowGroupIndices = transitionMatrix.getRowGroupIndices();
rowGroupIndices.erase(rowGroupIndices.begin());
multiplier->reduce(env, goal.direction(), rowGroupIndices, b, result, nullptr, &statesOfCoalition);
if (goal.isShieldingTask()) {
choiceValues = b;
}
return SMGSparseModelCheckingHelperReturnType<ValueType>(std::move(result), std::move(allStates), nullptr, std::move(choiceValues));
}
template<typename ValueType>
SMGSparseModelCheckingHelperReturnType<ValueType> SparseSmgRpatlHelper<ValueType>::computeBoundedGloballyProbabilities(Environment const& env, storm::solver::SolveGoal<ValueType>&& goal, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, storm::storage::BitVector const& psiStates, bool qualitative, storm::storage::BitVector statesOfCoalition, bool produceScheduler, ModelCheckerHint const& hint,uint64_t lowerBound, uint64_t upperBound) {
// G psi = not(F(not psi)) = not(true U (not psi))
// The psiStates are flipped, then the true U part is calculated, at the end the result is flipped again.
storm::storage::BitVector notPsiStates = ~psiStates;
statesOfCoalition.complement();
auto result = computeBoundedUntilProbabilities(env, std::move(goal), transitionMatrix, backwardTransitions, storm::storage::BitVector(transitionMatrix.getRowGroupCount(), true), notPsiStates, qualitative, statesOfCoalition, produceScheduler, hint, lowerBound, upperBound, true);
for (auto& element : result.values) {
element = storm::utility::one<ValueType>() - element;
}
for (auto& element : result.choiceValues) {
element = storm::utility::one<ValueType>() - element;
}
return result;
}
template<typename ValueType>
SMGSparseModelCheckingHelperReturnType<ValueType> SparseSmgRpatlHelper<ValueType>::computeBoundedUntilProbabilities(Environment const& env, storm::solver::SolveGoal<ValueType>&& goal, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates, bool qualitative, storm::storage::BitVector statesOfCoalition, bool produceScheduler, ModelCheckerHint const& hint,uint64_t lowerBound, uint64_t upperBound, bool computeBoundedGlobally) {
auto solverEnv = env;
solverEnv.solver().minMax().setMethod(storm::solver::MinMaxMethod::ValueIteration, false);
// boundedUntil formulas look like:
// phi U [lowerBound, upperBound] psi
// --
// We solve this by look at psiStates, finding phiStates which have paths to psiStates in the given step bounds,
// then we find all states which have a path to those phiStates in the given lower bound
// (which states the paths pass before the lower bound does not matter).
// First initialization of relevantStates between the step bounds.
storm::storage::BitVector relevantStates = phiStates & ~psiStates;
// Initializations.
std::vector<ValueType> x = std::vector<ValueType>(relevantStates.getNumberOfSetBits(), storm::utility::zero<ValueType>());
std::vector<ValueType> b = transitionMatrix.getConstrainedRowGroupSumVector(relevantStates, psiStates);
std::vector<ValueType> result = std::vector<ValueType>(transitionMatrix.getRowGroupCount(), storm::utility::zero<ValueType>());
std::vector<ValueType> constrainedChoiceValues = std::vector<ValueType>(transitionMatrix.getConstrainedRowGroupSumVector(relevantStates, psiStates).size(), storm::utility::zero<ValueType>());
std::unique_ptr<storm::storage::Scheduler<ValueType>> scheduler;
storm::storage::BitVector clippedStatesOfCoalition(relevantStates.getNumberOfSetBits());
clippedStatesOfCoalition.setClippedStatesOfCoalition(relevantStates, statesOfCoalition);
// If there are no relevantStates or the upperBound is 0, no computation is needed.
if(!relevantStates.empty() && upperBound > 0) {
// Reduce the matrix to relevant states. - relevant states are all states.
storm::storage::SparseMatrix<ValueType> submatrix = transitionMatrix.getSubmatrix(true, relevantStates, relevantStates, false);
// Create GameViHelper for computations.
storm::modelchecker::helper::internal::GameViHelper<ValueType> viHelper(submatrix, clippedStatesOfCoalition);
if (produceScheduler) {
viHelper.setProduceScheduler(true);
}
// If the lowerBound = 0, value iteration is done until the upperBound.
if(lowerBound == 0) {
solverEnv.solver().game().setMaximalNumberOfIterations(upperBound);
viHelper.performValueIteration(solverEnv, x, b, goal.direction(), constrainedChoiceValues);
} else {
// The lowerBound != 0, the first computation between the given bound steps is done.
solverEnv.solver().game().setMaximalNumberOfIterations(upperBound - lowerBound);
viHelper.performValueIteration(solverEnv, x, b, goal.direction(), constrainedChoiceValues);
// Initialization of subResult, fill it with the result of the first computation and 1s for the psiStates in full range.
std::vector<ValueType> subResult = std::vector<ValueType>(transitionMatrix.getRowGroupCount(), storm::utility::zero<ValueType>());
storm::utility::vector::setVectorValues(subResult, relevantStates, x);
storm::utility::vector::setVectorValues(subResult, psiStates, storm::utility::one<ValueType>());
// The newPsiStates are those states which can reach the psiStates in the steps between the bounds - the !=0 values in subResult.
storm::storage::BitVector newPsiStates(subResult.size(), false);
storm::utility::vector::setNonzeroIndices(subResult, newPsiStates);
// The relevantStates for the second part of the computation are all states.
relevantStates = storm::storage::BitVector(phiStates.size(), true);
submatrix = transitionMatrix.getSubmatrix(true, relevantStates, relevantStates, false);
// Update the viHelper for the (full-size) submatrix and statesOfCoalition.
viHelper.updateTransitionMatrix(submatrix);
viHelper.updateStatesOfCoalition(statesOfCoalition);
// Reset constrainedChoiceValues and b to 0-vector in the correct dimension.
constrainedChoiceValues = std::vector<ValueType>(transitionMatrix.getConstrainedRowGroupSumVector(relevantStates, newPsiStates).size(), storm::utility::zero<ValueType>());
b = std::vector<ValueType>(transitionMatrix.getConstrainedRowGroupSumVector(relevantStates, newPsiStates).size(), storm::utility::zero<ValueType>());
// The second computation is done between step 0 and the lowerBound
solverEnv.solver().game().setMaximalNumberOfIterations(lowerBound);
viHelper.performValueIteration(solverEnv, subResult, b, goal.direction(), constrainedChoiceValues);
x = subResult;
}
viHelper.fillChoiceValuesVector(constrainedChoiceValues, relevantStates, transitionMatrix.getRowGroupIndices());
if (produceScheduler) {
scheduler = std::make_unique<storm::storage::Scheduler<ValueType>>(expandScheduler(viHelper.extractScheduler(), relevantStates, ~relevantStates));
}
storm::utility::vector::setVectorValues(result, relevantStates, x);
}
// In bounded until and bounded eventually formula the psiStates have probability 1 to satisfy the formula,
// because once reaching a state where psi holds those formulas are satisfied.
// In bounded globally formulas we cannot set those states to 1 because it is possible to leave a set of safe states after reaching a psiState
// and in globally the formula has to hold in every time step (between the bounds).
// e.g. phiState -> phiState -> psiState -> unsafeState
if(!computeBoundedGlobally){
storm::utility::vector::setVectorValues(result, psiStates, storm::utility::one<ValueType>());
}
return SMGSparseModelCheckingHelperReturnType<ValueType>(std::move(result), std::move(relevantStates), std::move(scheduler), std::move(constrainedChoiceValues));
}
template class SparseSmgRpatlHelper<double>;
#ifdef STORM_HAVE_CARL
template class SparseSmgRpatlHelper<storm::RationalNumber>;
#endif
}
}
}