You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							125 lines
						
					
					
						
							3.9 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							125 lines
						
					
					
						
							3.9 KiB
						
					
					
				| // Small bench routine for Eigen available in Eigen | |
| // (C) Desire NUENTSA WAKAM, INRIA | |
|  | |
| #include <iostream> | |
| #include <fstream> | |
| #include <iomanip> | |
| #include <Eigen/Jacobi> | |
| #include <Eigen/Householder> | |
| #include <Eigen/IterativeLinearSolvers> | |
| #include <Eigen/LU> | |
| #include <unsupported/Eigen/SparseExtra> | |
| //#include <Eigen/SparseLU> | |
| #include <Eigen/SuperLUSupport> | |
| // #include <unsupported/Eigen/src/IterativeSolvers/Scaling.h> | |
| #include <bench/BenchTimer.h> | |
| #include <unsupported/Eigen/IterativeSolvers> | |
| using namespace std; | |
| using namespace Eigen; | |
| 
 | |
| int main(int argc, char **args) | |
| { | |
|   SparseMatrix<double, ColMajor> A;  | |
|   typedef SparseMatrix<double, ColMajor>::Index Index; | |
|   typedef Matrix<double, Dynamic, Dynamic> DenseMatrix; | |
|   typedef Matrix<double, Dynamic, 1> DenseRhs; | |
|   VectorXd b, x, tmp; | |
|   BenchTimer timer,totaltime;  | |
|   //SparseLU<SparseMatrix<double, ColMajor> >   solver; | |
| //   SuperLU<SparseMatrix<double, ColMajor> >   solver; | |
|   ConjugateGradient<SparseMatrix<double, ColMajor>, Lower,IncompleteCholesky<double,Lower> > solver;  | |
|   ifstream matrix_file;  | |
|   string line; | |
|   int  n; | |
|   // Set parameters | |
| //   solver.iparm(IPARM_THREAD_NBR) = 4; | |
|   /* Fill the matrix with sparse matrix stored in Matrix-Market coordinate column-oriented format */ | |
|   if (argc < 2) assert(false && "please, give the matrix market file "); | |
|    | |
|   timer.start(); | |
|   totaltime.start(); | |
|   loadMarket(A, args[1]); | |
|   cout << "End charging matrix " << endl; | |
|   bool iscomplex=false, isvector=false; | |
|   int sym; | |
|   getMarketHeader(args[1], sym, iscomplex, isvector); | |
|   if (iscomplex) { cout<< " Not for complex matrices \n"; return -1; } | |
|   if (isvector) { cout << "The provided file is not a matrix file\n"; return -1;} | |
|   if (sym != 0) { // symmetric matrices, only the lower part is stored | |
|     SparseMatrix<double, ColMajor> temp;  | |
|     temp = A; | |
|     A = temp.selfadjointView<Lower>(); | |
|   } | |
|   timer.stop(); | |
|    | |
|   n = A.cols(); | |
|   // ====== TESTS FOR SPARSE TUTORIAL ====== | |
| //   cout<< "OuterSize " << A.outerSize() << " inner " << A.innerSize() << endl;  | |
| //   SparseMatrix<double, RowMajor> mat1(A);  | |
| //   SparseMatrix<double, RowMajor> mat2; | |
| //   cout << " norm of A " << mat1.norm() << endl; ; | |
| //   PermutationMatrix<Dynamic, Dynamic, int> perm(n); | |
| //   perm.resize(n,1); | |
| //   perm.indices().setLinSpaced(n, 0, n-1); | |
| //   mat2 = perm * mat1; | |
| //   mat.subrows(); | |
| //   mat2.resize(n,n);  | |
| //   mat2.reserve(10); | |
| //   mat2.setConstant(); | |
| //   std::cout<< "NORM " << mat1.squaredNorm()<< endl;   | |
|  | |
|   cout<< "Time to load the matrix " << timer.value() <<endl; | |
|   /* Fill the right hand side */ | |
| 
 | |
| //   solver.set_restart(374); | |
|   if (argc > 2) | |
|     loadMarketVector(b, args[2]); | |
|   else  | |
|   { | |
|     b.resize(n); | |
|     tmp.resize(n); | |
| //       tmp.setRandom(); | |
|     for (int i = 0; i < n; i++) tmp(i) = i;  | |
|     b = A * tmp ; | |
|   } | |
| //   Scaling<SparseMatrix<double> > scal;  | |
| //   scal.computeRef(A); | |
| //   b = scal.LeftScaling().cwiseProduct(b); | |
|  | |
|   /* Compute the factorization */ | |
|   cout<< "Starting the factorization "<< endl;  | |
|   timer.reset(); | |
|   timer.start();  | |
|   cout<< "Size of Input Matrix "<< b.size()<<"\n\n"; | |
|   cout<< "Rows and columns "<< A.rows() <<" " <<A.cols() <<"\n"; | |
|   solver.compute(A); | |
| //   solver.analyzePattern(A); | |
| //   solver.factorize(A); | |
|   if (solver.info() != Success) { | |
|     std::cout<< "The solver failed \n"; | |
|     return -1;  | |
|   } | |
|   timer.stop();  | |
|   float time_comp = timer.value();  | |
|   cout <<" Compute Time " << time_comp<< endl;  | |
|    | |
|   timer.reset(); | |
|   timer.start(); | |
|   x = solver.solve(b); | |
| //   x = scal.RightScaling().cwiseProduct(x); | |
|   timer.stop(); | |
|   float time_solve = timer.value();  | |
|   cout<< " Time to solve " << time_solve << endl;  | |
|   | |
|   /* Check the accuracy */ | |
|   VectorXd tmp2 = b - A*x; | |
|   double tempNorm = tmp2.norm()/b.norm(); | |
|   cout << "Relative norm of the computed solution : " << tempNorm <<"\n"; | |
| //   cout << "Iterations : " << solver.iterations() << "\n";  | |
|    | |
|   totaltime.stop(); | |
|   cout << "Total time " << totaltime.value() << "\n"; | |
| //  std::cout<<x.transpose()<<"\n"; | |
|    | |
|   return 0; | |
| }
 |