You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							148 lines
						
					
					
						
							6.0 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							148 lines
						
					
					
						
							6.0 KiB
						
					
					
				| // This file is part of Eigen, a lightweight C++ template library | |
| // for linear algebra. Eigen itself is part of the KDE project. | |
| // | |
| // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com> | |
| // | |
| // This Source Code Form is subject to the terms of the Mozilla | |
| // Public License v. 2.0. If a copy of the MPL was not distributed | |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | |
|  | |
| #include "main.h" | |
|  | |
| // check minor separately in order to avoid the possible creation of a zero-sized | |
| // array. Comes from a compilation error with gcc-3.4 or gcc-4 with -ansi -pedantic. | |
| // Another solution would be to declare the array like this: T m_data[Size==0?1:Size]; in ei_matrix_storage | |
| // but this is probably not bad to raise such an error at compile time... | |
| template<typename Scalar, int _Rows, int _Cols> struct CheckMinor | |
| { | |
|     typedef Matrix<Scalar, _Rows, _Cols> MatrixType; | |
|     CheckMinor(MatrixType& m1, int r1, int c1) | |
|     { | |
|         int rows = m1.rows(); | |
|         int cols = m1.cols(); | |
| 
 | |
|         Matrix<Scalar, Dynamic, Dynamic> mi = m1.minor(0,0).eval(); | |
|         VERIFY_IS_APPROX(mi, m1.block(1,1,rows-1,cols-1)); | |
|         mi = m1.minor(r1,c1); | |
|         VERIFY_IS_APPROX(mi.transpose(), m1.transpose().minor(c1,r1)); | |
|         //check operator(), both constant and non-constant, on minor() | |
|         m1.minor(r1,c1)(0,0) = m1.minor(0,0)(0,0); | |
|     } | |
| }; | |
| 
 | |
| template<typename Scalar> struct CheckMinor<Scalar,1,1> | |
| { | |
|     typedef Matrix<Scalar, 1, 1> MatrixType; | |
|     CheckMinor(MatrixType&, int, int) {} | |
| }; | |
| 
 | |
| template<typename MatrixType> void submatrices(const MatrixType& m) | |
| { | |
|   /* this test covers the following files: | |
|      Row.h Column.h Block.h Minor.h DiagonalCoeffs.h | |
|   */ | |
|   typedef typename MatrixType::Scalar Scalar; | |
|   typedef typename MatrixType::RealScalar RealScalar; | |
|   typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType; | |
|   typedef Matrix<Scalar, 1, MatrixType::ColsAtCompileTime> RowVectorType; | |
|   int rows = m.rows(); | |
|   int cols = m.cols(); | |
| 
 | |
|   MatrixType m1 = MatrixType::Random(rows, cols), | |
|              m2 = MatrixType::Random(rows, cols), | |
|              m3(rows, cols), | |
|              mzero = MatrixType::Zero(rows, cols), | |
|              ones = MatrixType::Ones(rows, cols), | |
|              identity = Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> | |
|                               ::Identity(rows, rows), | |
|              square = Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> | |
|                               ::Random(rows, rows); | |
|   VectorType v1 = VectorType::Random(rows), | |
|              v2 = VectorType::Random(rows), | |
|              v3 = VectorType::Random(rows), | |
|              vzero = VectorType::Zero(rows); | |
| 
 | |
|   Scalar s1 = ei_random<Scalar>(); | |
| 
 | |
|   int r1 = ei_random<int>(0,rows-1); | |
|   int r2 = ei_random<int>(r1,rows-1); | |
|   int c1 = ei_random<int>(0,cols-1); | |
|   int c2 = ei_random<int>(c1,cols-1); | |
| 
 | |
|   //check row() and col() | |
|   VERIFY_IS_APPROX(m1.col(c1).transpose(), m1.transpose().row(c1)); | |
|   VERIFY_IS_APPROX(square.row(r1).eigen2_dot(m1.col(c1)), (square.lazy() * m1.conjugate())(r1,c1)); | |
|   //check operator(), both constant and non-constant, on row() and col() | |
|   m1.row(r1) += s1 * m1.row(r2); | |
|   m1.col(c1) += s1 * m1.col(c2); | |
| 
 | |
|   //check block() | |
|   Matrix<Scalar,Dynamic,Dynamic> b1(1,1); b1(0,0) = m1(r1,c1); | |
|   RowVectorType br1(m1.block(r1,0,1,cols)); | |
|   VectorType bc1(m1.block(0,c1,rows,1)); | |
|   VERIFY_IS_APPROX(b1, m1.block(r1,c1,1,1)); | |
|   VERIFY_IS_APPROX(m1.row(r1), br1); | |
|   VERIFY_IS_APPROX(m1.col(c1), bc1); | |
|   //check operator(), both constant and non-constant, on block() | |
|   m1.block(r1,c1,r2-r1+1,c2-c1+1) = s1 * m2.block(0, 0, r2-r1+1,c2-c1+1); | |
|   m1.block(r1,c1,r2-r1+1,c2-c1+1)(r2-r1,c2-c1) = m2.block(0, 0, r2-r1+1,c2-c1+1)(0,0); | |
| 
 | |
|   //check minor() | |
|   CheckMinor<Scalar, MatrixType::RowsAtCompileTime, MatrixType::ColsAtCompileTime> checkminor(m1,r1,c1); | |
| 
 | |
|   //check diagonal() | |
|   VERIFY_IS_APPROX(m1.diagonal(), m1.transpose().diagonal()); | |
|   m2.diagonal() = 2 * m1.diagonal(); | |
|   m2.diagonal()[0] *= 3; | |
|   VERIFY_IS_APPROX(m2.diagonal()[0], static_cast<Scalar>(6) * m1.diagonal()[0]); | |
| 
 | |
|   enum { | |
|     BlockRows = EIGEN_SIZE_MIN_PREFER_FIXED(MatrixType::RowsAtCompileTime,2), | |
|     BlockCols = EIGEN_SIZE_MIN_PREFER_FIXED(MatrixType::ColsAtCompileTime,5) | |
|   }; | |
|   if (rows>=5 && cols>=8) | |
|   { | |
|     // test fixed block() as lvalue | |
|     m1.template block<BlockRows,BlockCols>(1,1) *= s1; | |
|     // test operator() on fixed block() both as constant and non-constant | |
|     m1.template block<BlockRows,BlockCols>(1,1)(0, 3) = m1.template block<2,5>(1,1)(1,2); | |
|     // check that fixed block() and block() agree | |
|     Matrix<Scalar,Dynamic,Dynamic> b = m1.template block<BlockRows,BlockCols>(3,3); | |
|     VERIFY_IS_APPROX(b, m1.block(3,3,BlockRows,BlockCols)); | |
|   } | |
| 
 | |
|   if (rows>2) | |
|   { | |
|     // test sub vectors | |
|     VERIFY_IS_APPROX(v1.template start<2>(), v1.block(0,0,2,1)); | |
|     VERIFY_IS_APPROX(v1.template start<2>(), v1.start(2)); | |
|     VERIFY_IS_APPROX(v1.template start<2>(), v1.segment(0,2)); | |
|     VERIFY_IS_APPROX(v1.template start<2>(), v1.template segment<2>(0)); | |
|     int i = rows-2; | |
|     VERIFY_IS_APPROX(v1.template end<2>(), v1.block(i,0,2,1)); | |
|     VERIFY_IS_APPROX(v1.template end<2>(), v1.end(2)); | |
|     VERIFY_IS_APPROX(v1.template end<2>(), v1.segment(i,2)); | |
|     VERIFY_IS_APPROX(v1.template end<2>(), v1.template segment<2>(i)); | |
|     i = ei_random(0,rows-2); | |
|     VERIFY_IS_APPROX(v1.segment(i,2), v1.template segment<2>(i)); | |
|   } | |
| 
 | |
|   // stress some basic stuffs with block matrices | |
|   VERIFY(ei_real(ones.col(c1).sum()) == RealScalar(rows)); | |
|   VERIFY(ei_real(ones.row(r1).sum()) == RealScalar(cols)); | |
| 
 | |
|   VERIFY(ei_real(ones.col(c1).eigen2_dot(ones.col(c2))) == RealScalar(rows)); | |
|   VERIFY(ei_real(ones.row(r1).eigen2_dot(ones.row(r2))) == RealScalar(cols)); | |
| } | |
| 
 | |
| void test_eigen2_submatrices() | |
| { | |
|   for(int i = 0; i < g_repeat; i++) { | |
|     CALL_SUBTEST_1( submatrices(Matrix<float, 1, 1>()) ); | |
|     CALL_SUBTEST_2( submatrices(Matrix4d()) ); | |
|     CALL_SUBTEST_3( submatrices(MatrixXcf(3, 3)) ); | |
|     CALL_SUBTEST_4( submatrices(MatrixXi(8, 12)) ); | |
|     CALL_SUBTEST_5( submatrices(MatrixXcd(20, 20)) ); | |
|     CALL_SUBTEST_6( submatrices(MatrixXf(20, 20)) ); | |
|   } | |
| }
 |