You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							146 lines
						
					
					
						
							5.3 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							146 lines
						
					
					
						
							5.3 KiB
						
					
					
				| // This file is part of Eigen, a lightweight C++ template library | |
| // for linear algebra. Eigen itself is part of the KDE project. | |
| // | |
| // Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr> | |
| // | |
| // This Source Code Form is subject to the terms of the Mozilla | |
| // Public License v. 2.0. If a copy of the MPL was not distributed | |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | |
|  | |
| #include "main.h" | |
| #include <Eigen/QR> | |
|  | |
| #ifdef HAS_GSL | |
| #include "gsl_helper.h" | |
| #endif | |
|  | |
| template<typename MatrixType> void selfadjointeigensolver(const MatrixType& m) | |
| { | |
|   /* this test covers the following files: | |
|      EigenSolver.h, SelfAdjointEigenSolver.h (and indirectly: Tridiagonalization.h) | |
|   */ | |
|   int rows = m.rows(); | |
|   int cols = m.cols(); | |
| 
 | |
|   typedef typename MatrixType::Scalar Scalar; | |
|   typedef typename NumTraits<Scalar>::Real RealScalar; | |
|   typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType; | |
|   typedef Matrix<RealScalar, MatrixType::RowsAtCompileTime, 1> RealVectorType; | |
|   typedef typename std::complex<typename NumTraits<typename MatrixType::Scalar>::Real> Complex; | |
| 
 | |
|   RealScalar largerEps = 10*test_precision<RealScalar>(); | |
| 
 | |
|   MatrixType a = MatrixType::Random(rows,cols); | |
|   MatrixType a1 = MatrixType::Random(rows,cols); | |
|   MatrixType symmA =  a.adjoint() * a + a1.adjoint() * a1; | |
| 
 | |
|   MatrixType b = MatrixType::Random(rows,cols); | |
|   MatrixType b1 = MatrixType::Random(rows,cols); | |
|   MatrixType symmB = b.adjoint() * b + b1.adjoint() * b1; | |
| 
 | |
|   SelfAdjointEigenSolver<MatrixType> eiSymm(symmA); | |
|   // generalized eigen pb | |
|   SelfAdjointEigenSolver<MatrixType> eiSymmGen(symmA, symmB); | |
| 
 | |
|   #ifdef HAS_GSL | |
|   if (ei_is_same_type<RealScalar,double>::ret) | |
|   { | |
|     typedef GslTraits<Scalar> Gsl; | |
|     typename Gsl::Matrix gEvec=0, gSymmA=0, gSymmB=0; | |
|     typename GslTraits<RealScalar>::Vector gEval=0; | |
|     RealVectorType _eval; | |
|     MatrixType _evec; | |
|     convert<MatrixType>(symmA, gSymmA); | |
|     convert<MatrixType>(symmB, gSymmB); | |
|     convert<MatrixType>(symmA, gEvec); | |
|     gEval = GslTraits<RealScalar>::createVector(rows); | |
| 
 | |
|     Gsl::eigen_symm(gSymmA, gEval, gEvec); | |
|     convert(gEval, _eval); | |
|     convert(gEvec, _evec); | |
| 
 | |
|     // test gsl itself ! | |
|     VERIFY((symmA * _evec).isApprox(_evec * _eval.asDiagonal(), largerEps)); | |
| 
 | |
|     // compare with eigen | |
|     VERIFY_IS_APPROX(_eval, eiSymm.eigenvalues()); | |
|     VERIFY_IS_APPROX(_evec.cwise().abs(), eiSymm.eigenvectors().cwise().abs()); | |
| 
 | |
|     // generalized pb | |
|     Gsl::eigen_symm_gen(gSymmA, gSymmB, gEval, gEvec); | |
|     convert(gEval, _eval); | |
|     convert(gEvec, _evec); | |
|     // test GSL itself: | |
|     VERIFY((symmA * _evec).isApprox(symmB * (_evec * _eval.asDiagonal()), largerEps)); | |
| 
 | |
|     // compare with eigen | |
|     MatrixType normalized_eivec = eiSymmGen.eigenvectors()*eiSymmGen.eigenvectors().colwise().norm().asDiagonal().inverse(); | |
|     VERIFY_IS_APPROX(_eval, eiSymmGen.eigenvalues()); | |
|     VERIFY_IS_APPROX(_evec.cwiseAbs(), normalized_eivec.cwiseAbs()); | |
| 
 | |
|     Gsl::free(gSymmA); | |
|     Gsl::free(gSymmB); | |
|     GslTraits<RealScalar>::free(gEval); | |
|     Gsl::free(gEvec); | |
|   } | |
|   #endif | |
|  | |
|   VERIFY((symmA * eiSymm.eigenvectors()).isApprox( | |
|           eiSymm.eigenvectors() * eiSymm.eigenvalues().asDiagonal(), largerEps)); | |
| 
 | |
|   // generalized eigen problem Ax = lBx | |
|   VERIFY((symmA * eiSymmGen.eigenvectors()).isApprox( | |
|           symmB * (eiSymmGen.eigenvectors() * eiSymmGen.eigenvalues().asDiagonal()), largerEps)); | |
| 
 | |
|   MatrixType sqrtSymmA = eiSymm.operatorSqrt(); | |
|   VERIFY_IS_APPROX(symmA, sqrtSymmA*sqrtSymmA); | |
|   VERIFY_IS_APPROX(sqrtSymmA, symmA*eiSymm.operatorInverseSqrt()); | |
| } | |
| 
 | |
| template<typename MatrixType> void eigensolver(const MatrixType& m) | |
| { | |
|   /* this test covers the following files: | |
|      EigenSolver.h | |
|   */ | |
|   int rows = m.rows(); | |
|   int cols = m.cols(); | |
| 
 | |
|   typedef typename MatrixType::Scalar Scalar; | |
|   typedef typename NumTraits<Scalar>::Real RealScalar; | |
|   typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType; | |
|   typedef Matrix<RealScalar, MatrixType::RowsAtCompileTime, 1> RealVectorType; | |
|   typedef typename std::complex<typename NumTraits<typename MatrixType::Scalar>::Real> Complex; | |
| 
 | |
|   // RealScalar largerEps = 10*test_precision<RealScalar>(); | |
|  | |
|   MatrixType a = MatrixType::Random(rows,cols); | |
|   MatrixType a1 = MatrixType::Random(rows,cols); | |
|   MatrixType symmA =  a.adjoint() * a + a1.adjoint() * a1; | |
| 
 | |
|   EigenSolver<MatrixType> ei0(symmA); | |
|   VERIFY_IS_APPROX(symmA * ei0.pseudoEigenvectors(), ei0.pseudoEigenvectors() * ei0.pseudoEigenvalueMatrix()); | |
|   VERIFY_IS_APPROX((symmA.template cast<Complex>()) * (ei0.pseudoEigenvectors().template cast<Complex>()), | |
|     (ei0.pseudoEigenvectors().template cast<Complex>()) * (ei0.eigenvalues().asDiagonal())); | |
| 
 | |
|   EigenSolver<MatrixType> ei1(a); | |
|   VERIFY_IS_APPROX(a * ei1.pseudoEigenvectors(), ei1.pseudoEigenvectors() * ei1.pseudoEigenvalueMatrix()); | |
|   VERIFY_IS_APPROX(a.template cast<Complex>() * ei1.eigenvectors(), | |
|                    ei1.eigenvectors() * ei1.eigenvalues().asDiagonal()); | |
| 
 | |
| } | |
| 
 | |
| void test_eigen2_eigensolver() | |
| { | |
|   for(int i = 0; i < g_repeat; i++) { | |
|     // very important to test a 3x3 matrix since we provide a special path for it | |
|     CALL_SUBTEST_1( selfadjointeigensolver(Matrix3f()) ); | |
|     CALL_SUBTEST_2( selfadjointeigensolver(Matrix4d()) ); | |
|     CALL_SUBTEST_3( selfadjointeigensolver(MatrixXf(7,7)) ); | |
|     CALL_SUBTEST_4( selfadjointeigensolver(MatrixXcd(5,5)) ); | |
|     CALL_SUBTEST_5( selfadjointeigensolver(MatrixXd(19,19)) ); | |
| 
 | |
|     CALL_SUBTEST_6( eigensolver(Matrix4f()) ); | |
|     CALL_SUBTEST_5( eigensolver(MatrixXd(17,17)) ); | |
|   } | |
| } | |
| 
 |